, Volume 11, Issue 8, pp 1439–1451 | Cite as

Mechanisms of cell death induction by L-amino acid oxidase, a major component of ophidian venom

  • Sudharsana Rao Ande
  • Phaneeswara Rao Kommoju
  • Sigrid Draxl
  • Michael Murkovic
  • Peter Macheroux
  • Sandro Ghisla
  • Elisa Ferrando-May


L-amino acid oxidase (LAAO) from the Malayan pit viper induces both necrosis and apoptosis in Jurkat cells. Cell death by necrosis is attributed to H2O2 produced by oxidation of α-amino acids. In the presence of catalase that effectively scavenges H2O2, a switch to apoptosis is observed. The major factors contributing to apoptosis are proposed to be: (i) generation of toxic intermediates from fetal calf serum (ii) binding and internalization of LAAO. The latter process appears to be mediated by the glycan moiety of the enzyme as desialylation reduces cytotoxicity. D-amino acid oxidase (DAAO), which catalyzes the same reaction as LAAO but lacks glycosylation, triggers necrosis as a consequence of H2O2 production but not apoptosis in the presence of catalase. Thus induction of cell death by LAAO appears to involve both the generation of H2O2 and the molecular interaction of the glycan moiety of the enzyme with structures at the cell surface.


Amino acids Apoptosis Flavin Glycosylation Necrosis 



Apoptosis-inducing protein


D-Amino acid oxidase


L-Amino acid oxidase


benzyloxycarbonyl-Val-Ala-Asp-CH2OC (O)-2,6 dichloro benzene, fluoro methyl ketone


Asp-Glu-Val-Asp 7-amino-4-trifluoromethyl coumarin


Fetal calf serum


LAAO pretreated-medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bonfoco E, Krainc D, Ankarcrona M, Nicotera P, Lipton SA (1995) Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures. Proc Natl Acad Sci USA 92:7162–7166PubMedCrossRefGoogle Scholar
  2. 2.
    Dypbukt JM, Ankarcrona M, Burkitt M, Sjoholm A, Strom K, Orrenius S, Nicotera P (1994) Different prooxidant levels stimulate growth, trigger apoptosis, or produce necrosis of insulin-secreting RINm5F cells. The role of intracellular polyamines. J Biol Chem 269:30553–30560PubMedGoogle Scholar
  3. 3.
    Nicotera P, Leist M, Ferrando-May E (1998) Intracellular ATP, a switch in the decision between apoptosis and necrosis. Toxicol Lett 102–103:139–142PubMedCrossRefGoogle Scholar
  4. 4.
    Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973PubMedCrossRefGoogle Scholar
  5. 5.
    Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P (1997) Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 185:1481–1486PubMedCrossRefGoogle Scholar
  6. 6.
    Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840PubMedGoogle Scholar
  7. 7.
    Zamaraeva MV, Sabirov RZ, Maeno E, Ando-Akatsuka Y, Bessonova SV, Okada Y (2005) Cells die with increased cytosolic ATP during apoptosis: a bioluminescence study with intracellular luciferase. Cell Death Differ 12:1390–1397PubMedCrossRefGoogle Scholar
  8. 8.
    Borner C (2003) The Bcl-2 protein family: sensors and checkpoints for life-or-death decisions. Mol Immunol 39:615–647PubMedCrossRefGoogle Scholar
  9. 9.
    Annis MG, Yethon JA, Leber B, Andrews DW (2004) There is more to life and death than mitochondria: Bcl-2 proteins at the endoplasmic reticulum. Biochim Biophys Acta 1644:115–123PubMedCrossRefGoogle Scholar
  10. 10.
    Hockenbery DM, Oltvai ZN, Yin XM, Milliman CL, Korsmeyer SJ (1993) Bcl-2 functions in an antioxidant pathway to prevent apoptosis. Cell 75:241–251PubMedCrossRefGoogle Scholar
  11. 11.
    Kane DJ, Ord T, Anton R, Bredesen DE (1995) Expression of bcl-2 inhibits necrotic neural cell death. J Neurosci Res 40:269–275PubMedCrossRefGoogle Scholar
  12. 12.
    Ellerby LM, Ellerby HM, Park SM, Holleran AL, Murphy AN, Fiskum G, Kane DJ, Testa MP, Kayalar C, Bredesen DE (1996) Shift of the cellular oxidation-reduction potential in neural cells expressing Bcl-2. J Neurochem 67:1259–1267PubMedCrossRefGoogle Scholar
  13. 13.
    Mirkovic N, Voehringer DW, Story MD, McConkey DJ, McDonnell TJ, Meyn RE (1997) Resistance to radiation-induced apoptosis in Bcl-2-expressing cells is reversed by depleting cellular thiols. Oncogene 15:1461–1470PubMedCrossRefGoogle Scholar
  14. 14.
    Amstad PA, Liu H, Ichimiya M, Berezesky IK, Trump BF, Buhimschi IA, Gutierrez PL (2001) BCL-2 is involved in preventing oxidant-induced cell death and in decreasing oxygen radical production. Redox Rep 6:351–362PubMedCrossRefGoogle Scholar
  15. 15.
    Skarnes RC (1970) L-amino-acid oxidase, a bactericidal system. Nature 225:1072–1073PubMedCrossRefGoogle Scholar
  16. 16.
    Zhang YJ, Wang JH, Lee WH, Wang Q, Liu H, Zheng YT, Zhang Y (2003) Molecular characterization of Trimeresurus stejnegeri venom L-amino acid oxidase with potential anti-HIV activity. Biochem Biophys Res Commun 309:598–604PubMedCrossRefGoogle Scholar
  17. 17.
    Kanzawa N, Shintani S, Ohta K, Kitajima S, Ehara T, Kobayashi H, Kizaki H, Tsuchiya T (2004) Achacin induces cell death in HeLa cells through two different mechanisms. Arch Biochem Biophys 422:103–109PubMedCrossRefGoogle Scholar
  18. 18.
    Murakawa M, Jung SK, Iijima K, Yonehara S (2001) Apoptosis-inducing protein, AIP, from parasite-infected fish induces apoptosis in mammalian cells by two different molecular mechanisms. Cell Death Differ 8:298–307PubMedCrossRefGoogle Scholar
  19. 19.
    Suhr SM, Kim DS (1996) Identification of the snake venom substance that induces apoptosis. Biochem Biophys Res Commun 224:134–139PubMedCrossRefGoogle Scholar
  20. 20.
    Ali SA, Stoeva S, Abbasi A, Alam JM, Kayed R, Faigle M, Neumeister B, Voelter W (2000) Isolation, structural, and functional characterization of an apoptosis-inducing L-amino acid oxidase from leaf-nosed viper (Eristocophis macmahoni) snake venom. Arch Biochem Biophys 384:216–226PubMedCrossRefGoogle Scholar
  21. 21.
    Zeller AE (1977) Snake venom action: are enzymes involved in it? Experientia 33:143–150PubMedCrossRefGoogle Scholar
  22. 22.
    Ehara T, Kitajima S, Kanzawa N, Tamiya T, Tsuchiya T (2002) Antimicrobial action of achacin is mediated by L-amino acid oxidase activity. FEBS Lett 531:509–512PubMedCrossRefGoogle Scholar
  23. 23.
    Iijima R, Kisugi J, Yamazaki M (2003) L-amino acid oxidase activity of an antineoplastic factor of a marine mollusk and its relationship to cytotoxicity. Dev Comp Immunol 27:505–512PubMedCrossRefGoogle Scholar
  24. 24.
    Torii S, Naito M, Tsuruo T (1997) Apoxin I, a novel apoptosis-inducing factor with L-amino acid oxidase activity purified from Western diamondback rattlesnake venom. J Biol Chem 272:9539–9542PubMedCrossRefGoogle Scholar
  25. 25.
    Pawelek PD, Cheah J, Coulombe R, Macheroux P, Ghisla S, Vrielink A (2000) The structure of L-amino acid oxidase reveals the substrate trajectory into an enantiomerically conserved active site. Embo J 19:4204–4215PubMedCrossRefGoogle Scholar
  26. 26.
    Geyer A, Fitzpatrick TB, Pawelek PD, Kitzing K, Vrielink A, Ghisla S, Macheroux P (2001) Structure and characterization of the glycan moiety of L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Eur J Biochem 268:4044–4053PubMedCrossRefGoogle Scholar
  27. 27.
    von Gunten S, Yousefi S, Seitz M, Jakob SM, Schaffner T, Seger R, Takala J, Villiger PM, Simon HU (2005) Siglec-9 transduces apoptotic and nonapoptotic death signals into neutrophils depending on the proinflammatory cytokine environment. Blood 106:1423–1431PubMedCrossRefGoogle Scholar
  28. 28.
    Macheroux P, Seth O, Bollschweiler C, Schwarz M, Kurfurst M, Au LC, Ghisla S (2001) L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem 268:1679–1686PubMedCrossRefGoogle Scholar
  29. 29.
    Bross P, Engst S, Strauss AW, Kelly DP, Rasched I, Ghisla S (1990) Characterization of wild-type and an active site mutant of human medium chain acyl-CoA dehydrogenase after expression in Escherichia coli. J Biol Chem 265:7116–7119PubMedGoogle Scholar
  30. 30.
    Coles CJ, Edmondson DE, Singer TP (1977) Reversible inactivation of L-amino acid oxidase. Properties of the three conformational forms. J Biol Chem 252:8035–8039PubMedGoogle Scholar
  31. 31.
    Aminoff D (1961) Methods for the quantitative estimation of N-acetylneuraminic acid and their application to hydrolysates of sialomucoids Biochem J 81:384–392PubMedGoogle Scholar
  32. 32.
    Nisizawa K, Pigman W (1959) The composition and properties of the mucin clot from cattle submaxillary glands. Arch Oral Biol 1:161–170PubMedCrossRefGoogle Scholar
  33. 33.
    Orlov SN, Pchejetski D, Taurin S, Thorin-Trescases N, Maximov GV, Pshezhetsky AV, Rubin AB, Hamet P (2004) Apoptosis in serum-deprived vascular smooth muscle cells: evidence for cell volume-independent mechanism. Apoptosis 9:55–66PubMedCrossRefGoogle Scholar
  34. 34.
    Leicht M, Marx G, Karbach D, Gekle M, Kohler T, Zimmer HG (2003) Mechanism of cell death of rat cardiac fibroblasts induced by serum depletion. Mol Cell Biochem 251:119–126PubMedCrossRefGoogle Scholar
  35. 35.
    Curti B, Ronchi S, Branzoli U, Ferri G, Williams CH Jr (1973) Improved purification, amino acid analysis and molecular weight of homogenous D-amino acid oxidase from pig kidney. Biochim Biophys Acta 327:266–273PubMedGoogle Scholar
  36. 36.
    Pollegioni L, Molla G, Campaner S, Martegani E, Pilone MS (1997) Cloning, sequencing and expression in E. coli of a D-amino acid oxidase cDNA from Rhodotorula gracilis active on cephalosporin C. J Biotechnol 58:115–123PubMedCrossRefGoogle Scholar
  37. 37.
    Voehringer DW, Meyn RE (2000) Redox aspects of Bcl-2 function. Antioxid Redox Signal 2:537–550PubMedCrossRefGoogle Scholar
  38. 38.
    Schinzel A, Kaufmann T, Borner C (2004) Bcl-2 family members: integrators of survival and death signals in physiology and pathology [corrected]. Biochim Biophys Acta 1644:95–105PubMedCrossRefGoogle Scholar
  39. 39.
    Tsujimoto Y, Shimizu S, Eguchi Y, Kamiike W, Matsuda H (1997) Bcl-2 and Bcl-xL block apoptosis as well as necrosis: possible involvement of common mediators in apoptotic and necrotic signal transduction pathways. Leukemia 11 (Suppl 3):380–382PubMedGoogle Scholar
  40. 40.
    Single B, Leist M, Nicotera P (2001) Differential effects of bcl-2 on cell death triggered under ATP-depleting conditions. Exp Cell Res 262:8–16PubMedCrossRefGoogle Scholar
  41. 41.
    Choi WS, Lee EH, Chung CW, Jung YK, Jin BK, Kim SU, Oh TH, Saido TC, Oh YJ (2001) Cleavage of Bax is mediated by caspase-dependent or -independent calpain activation in dopaminergic neuronal cells: protective role of Bcl-2. J Neurochem 77:1531–1541PubMedCrossRefGoogle Scholar
  42. 42.
    Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47PubMedGoogle Scholar
  43. 43.
    Ge X, Fu YM, Li YQ, Meadows GG (2002) Activation of caspases and cleavage of Bid are required for tyrosine and phenylalanine deficiency-induced apoptosis of human A375 melanoma cells. Arch Biochem Biophys 403:50–58PubMedCrossRefGoogle Scholar
  44. 44.
    Torii S, Yamane K, Mashima T, Haga N, Yamamoto K, Fox JW, Naito M, Tsuruo T (2000) Molecular cloning and functional analysis of apoxin I, a snake venom-derived apoptosis-inducing factor with L-amino acid oxidase activity. Biochemistry 39:3197–3205PubMedCrossRefGoogle Scholar
  45. 45.
    Suhr SM, Kim DS (1999) Comparison of the apoptotic pathways induced by L-amino acid oxidase and hydrogen peroxide. J Biochem (Tokyo) 125:305–309Google Scholar
  46. 46.
    Dorland RB, Middlebrook JL, Leppla SH (1979) Receptor-mediated internalization and degradation of diphtheria toxin by monkey kidney cells. J Biol Chem 254:11337–11342PubMedGoogle Scholar
  47. 47.
    Middlebrook JL, Dorland RB, Leppla SH. Effects of lectins on the interaction of diphtheria toxin with mammalian cells (1979) Exp Cell Res 121:95–101PubMedCrossRefGoogle Scholar
  48. 48.
    Morris RE, Gerstein AS, Bonventre PF, Saelinger CB (1985) Receptor-mediated entry of diphtheria toxin into monkey kidney (Vero) cells: electron microscopic evaluation. Infect Immun 50:721–727PubMedGoogle Scholar
  49. 49.
    Keen JH, Maxfield FR, Hardegree MC, Habig WH (1982) Receptor-mediated endocytosis of diphtheria toxin by cells in culture. Proc Natl Acad Sci USA 79:2912–2916PubMedCrossRefGoogle Scholar
  50. 50.
    Varki A (1997) Sialic acids as ligands in recognition phenomena. Faseb J 11:248–255PubMedGoogle Scholar
  51. 51.
    Blixt O, Collins BE, van den Nieuwenhof IM, Crocker PR, Paulson JC (2003) Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem 278:31007–31019PubMedCrossRefGoogle Scholar
  52. 52.
    Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337–342PubMedCrossRefGoogle Scholar
  53. 53.
    Crocker PR, Zhang J (2002) New I-type lectins of the CD 33-related siglec subgroup identified through genomics. Biochem Soc Symp 83–94Google Scholar
  54. 54.
    Varki A (1992) Selectins and other mammalian sialic acid-binding lectins. Curr Opin Cell Biol 4:257–266PubMedCrossRefGoogle Scholar
  55. 55.
    Kelm S, Schauer R (1997) Sialic acids in molecular and cellular interactions. Int Rev Cytol 175:137–240PubMedCrossRefGoogle Scholar
  56. 56.
    Zhang H, Yang Q, Sun M, Teng M, Niu L (2004) Hydrogen peroxide produced by two amino acid oxidases mediates antibacterial actions. J Microbiol 42:336–339PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Sudharsana Rao Ande
    • 1
  • Phaneeswara Rao Kommoju
    • 1
  • Sigrid Draxl
    • 3
  • Michael Murkovic
    • 3
  • Peter Macheroux
    • 4
  • Sandro Ghisla
    • 1
  • Elisa Ferrando-May
    • 2
  1. 1.Biochemistry Research GroupUniversity of KonstanzKonstanzGermany
  2. 2.Molecular Toxicology Group, Department of BiologyUniversity of KonstanzKonstanzGermany
  3. 3.Institute of Food Chemistry and TechnologyGraz University of TechnologyGrazAustria
  4. 4.Institute of BiochemistryGraz University of TechnologyGrazAustria

Personalised recommendations