, 11:1149 | Cite as

Cytosolic acidification and lysosomal alkalinization during TNF-α induced apoptosis in U937 cells

  • Cathrine Nilsson
  • Uno Johansson
  • Ann-Charlotte Johansson
  • Katarina Kågedal
  • Karin Öllinger


Apoptosis is often associated with acidification of the cytosol and since loss of lysosomal proton gradient and release of lysosomal content are early events during apoptosis, we investigated if the lysosomal compartment could contribute to cytosolic acidification. After exposure of U937 cells to tumor necrosis factor-α, three populations; healthy, pre-apoptotic, and apoptotic cells, were identified by flow cytometry. These populations were investigated regarding intra-cellular pH and apoptosis-associated events. There was a drop in cytosolic pH from 7.2 ± 0.1 in healthy cells to 6.8 ± 0.1 in pre-apoptotic, caspase-negative cells. In apoptotic, caspase-positive cells, the pH was further decreased to 5.7 ± 0.04. The cytosolic acidification was not affected by addition of specific inhibitors towards caspases or the mitochondrial F0F1-ATPase. In parallel to the cytosolic acidification, a rise in lysosomal pH from 4.3 ± 0.3, in the healthy population, to 4.8 ± 0.3 and 5.5 ± 0.3 in the pre-apoptotic- and apoptotic populations, respectively, was detected. In addition, lysosomal membrane permeability increased as detected as release of cathepsin D from lysosomes to the cytosol in pre-apoptotic and apoptotic cells. We, thus, suggest that lysosomal proton release is the cause of the cytosolic acidification of U937 cells exposed to TNF-α.


Apoptosis Cathepsin Cytosolic acidification Lysosomal alkalinization pH TNF-α 


  1. 1.
    Foghsgaard L, Wissing D, Mauch D, et al (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010PubMedCrossRefGoogle Scholar
  2. 2.
    Werneburg NW, Guicciardi ME, Bronk SF, Gores GJ (2002) Tumor necrosis factor-alpha-associated lysosomal permeabilization is cathepsin B dependent. Am J Phys—Gastrointest Liver Phys 283:G947–956Google Scholar
  3. 3.
    Johansson AC, Steen H, Öllinger K, Roberg K (2003) Cathepsin D mediates cytochrome c release and caspase activation in human fibroblast apoptosis induced by staurosporine. Cell Death Differ 10:1253–1259PubMedCrossRefGoogle Scholar
  4. 4.
    Roberg K, Öllinger K (1998) Oxidative stress causes relocation of the lysosomal enzyme cathepsin D with ensuing apoptosis in neonatal rat cardiomyocytes. Am J Pathol 152:1151–1156PubMedGoogle Scholar
  5. 5.
    Roberts LR, Kurosawa H, Bronk SF, et al (1997) Cathepsin B contributes to bile salt-induced apoptosis of rat hepatocytes. Gastroenterology 113:1714–1726PubMedCrossRefGoogle Scholar
  6. 6.
    Gottlieb RA, Nordberg J, Skowronski E, Babior BM (1996) Apoptosis induced in Jurkat cells by several agents is preceded by intracellular acidification. Proc Natl Acad Sci USA 93:654–658PubMedCrossRefGoogle Scholar
  7. 7.
    Li J, Eastman A (1995) Apoptosis in an interleukin-2-dependent cytotoxic T lymphocyte cell line is associated with intracellular acidification. Role of the Na+/H+-antiport. J Biol Chem 270:3203–3211PubMedCrossRefGoogle Scholar
  8. 8.
    Matsuyama S, Llopis J, Deveraux QL, Tsien RY, Reed JC (2000) Changes in intramitochondrial and cytosolic pH: early events that modulate caspase activation during apoptosis. Nat Cellbiol 2:318–325CrossRefGoogle Scholar
  9. 9.
    Matsuyama S, Reed JC (2000) Mitochondria-dependent apoptosis and cellular pH regulation. Cell Death Differ 7:1155–1165PubMedCrossRefGoogle Scholar
  10. 10.
    Thangaraju M, Sharma K, Leber B, Andrews DW, Shen SH, Srikant CB (1999) Regulation of acidification and apoptosis by SHP-1 and Bcl-2. J Biol Chem 274:29549–29557PubMedCrossRefGoogle Scholar
  11. 11.
    Beem E, Holliday LS, Segal MS (2004) The 1.4-MDa apoptosome is a critical intermediate in apoptosome maturation. Am J Physiol - Cell Physiol 287:C664–672PubMedCrossRefGoogle Scholar
  12. 12.
    Segal MS, Beem E (2001) Effect of pH, ionic charge, and osmolality on cytochrome c-mediated caspase-3 activity. Am J Physiol - Cell Physiol 281:C1196–1204PubMedGoogle Scholar
  13. 13.
    Roy S, Bayly CI, Gareau Y, et al (2001) Maintenance of caspase-3 proenzyme dormancy by an intrinsic “safety catch” regulatory tripeptide. Proc Natl Acad Sci USA 98:6132–6137PubMedCrossRefGoogle Scholar
  14. 14.
    Matsuyama S, Schendel SL, Xie Z, Reed JC (1998) Cytoprotection by Bcl-2 requires the pore-forming alpha5 and alpha6 helices. J Biol Chem 273:30995–31001PubMedCrossRefGoogle Scholar
  15. 15.
    Schendel SL, Azimov R, Pawlowski K, Godzik A, Kagan BL, Reed JC (1999) Ion channel activity of the BH3 only Bcl-2 family member, BID. J Biol Chem 274:21932–21936PubMedCrossRefGoogle Scholar
  16. 16.
    Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94:5113–5118PubMedCrossRefGoogle Scholar
  17. 17.
    Schlesinger PH, Gross A, Yin XM, et al (1997) Comparison of the ion channel characteristics of proapoptotic BAX and antiapoptotic BCL-2. Proc Natl Acad Sci USA 94:11357–11362PubMedCrossRefGoogle Scholar
  18. 18.
    Xie Z, Schendel S, Matsuyama S, Reed JC (1998) Acidic pH promotes dimerization of Bcl-2 family proteins. Biochemistry 37:6410–6418PubMedCrossRefGoogle Scholar
  19. 19.
    Hirpara JL, Clement MV, Pervaiz S (2001) Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 276:514–521PubMedCrossRefGoogle Scholar
  20. 20.
    Meisenholder GW, Martin SJ, Green DR, Nordberg J, Babior BM, Gottlieb RA (1996) Events in apoptosis. Acidification is downstream of protease activation and BCL-2 protection. J Biol Chem 271:16260–16262PubMedCrossRefGoogle Scholar
  21. 21.
    Liu D, Martino G, Thangaraju M, et al (2000) Caspase-8-mediated intracellular acidification precedes mitochondrial dysfunction in somatostatin-induced apoptosis. J Biol Chem 275:9244–9250PubMedCrossRefGoogle Scholar
  22. 22.
    Brunk UT, Svensson I (1999) Oxidative stress, growth factor starvation and Fas activation may all cause apoptosis through lysosomal leak. Redox Report 4:3–11PubMedCrossRefGoogle Scholar
  23. 23.
    Zhao M, Eaton JW, Brunk UT (2000) Protection against oxidant-mediated lysosomal rupture: a new anti-apoptotic activity of Bcl-2? FEBS Lett 485:104–108PubMedCrossRefGoogle Scholar
  24. 24.
    Guicciardi ME, Deussing J, Miyoshi H, et al (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137PubMedCrossRefGoogle Scholar
  25. 25.
    Nilsson C, Kågedal K, Johansson U, Öllinger K (2003) Analysis of cytosolic and lysosomal pH in apoptotic cells by flow cytometry. Methods Cell Sci 25:185–194PubMedCrossRefGoogle Scholar
  26. 26.
    Brunk UT, Dalen H, Roberg K, Hellquist HB (1997) Photo-oxidative disruption of lysosomal membranes causes apoptosis of cultured human fibroblasts. Free Radic Biol Med 23:616–626PubMedCrossRefGoogle Scholar
  27. 27.
    Reers M, Smith TW, Chen LB (1991) J-aggregate formation of a carbocyanine as a quantitative fluorescent indicator of membrane potential. Biochemistry 30:4480–4486PubMedCrossRefGoogle Scholar
  28. 28.
    Smiley ST, Reers M, Mottola-Hartshorn C, et al (1991) Intracellular heterogeneity in mitochondrial membrane potentials revealed by a J-aggregate-forming lipophilic cation JC-1. Proc Natl Acad Sci USA 88:3671–3675PubMedCrossRefGoogle Scholar
  29. 29.
    Hishita T, Tada-Oikawa S, Tohyama K, et al (2001) Caspase-3 activation by lysosomal enzymes in cytochrome c-independent apoptosis in myelodysplastic syndrome-derived cell line P39. Cancer Res 61:2878–2884PubMedGoogle Scholar
  30. 30.
    Yuan XM, Li W, Brunk UT, Dalen H, Chang YH, Sevanian A (2000) Lysosomal destabilization during macrophage damage induced by cholesterol oxidation products. Free Radic Biol Med 28:208–218PubMedCrossRefGoogle Scholar
  31. 31.
    Li W, Yuan XM, Ivanova S, Tracey KJ, Eaton JW, Brunk UT (2003) 3-Aminopropanal, formed during cerebral ischaemia, is a potent lysosomotropic neurotoxin. Biochem J 371:429–436PubMedCrossRefGoogle Scholar
  32. 32.
    Li W, Yuan X, Nordgren G, et al (2000) Induction of cell death by the lysosomotropic detergent MSDH. FEBS Lett 470:35–39PubMedCrossRefGoogle Scholar
  33. 33.
    Chen JW, Murphy TL, Willingham MC, Pastan I, August JT (1985) Identification of two lysosomal membrane glycoproteins. J Cell Biol 101:85–95PubMedCrossRefGoogle Scholar
  34. 34.
    Dubowchik GM, Gawlak SL, Firestone RA (1995) The in vitro effect of three lysosomotropic detergents against three human tumor cell lines. Bioorg Med Chem Lett 5:893–898CrossRefGoogle Scholar
  35. 35.
    Kågedal K, Zhao M, Svensson I, Brunk UT (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem J 359:335–343PubMedCrossRefGoogle Scholar
  36. 36.
    Stennicke HR, Salvesen GS (1997) Biochemical characteristics of caspases-3,-6,-7, and -8. J Biol Chem 272:25719–25723PubMedCrossRefGoogle Scholar
  37. 37.
    Roberg K, Johansson U, Öllinger K (1999)Lysosomal release of cathepsin D precedes relocation of cytochrome c and loss of mitochondrial transmembrane potential during apoptosis induced by oxidative stress. Free Radic Biol Med 27:1228–1237PubMedCrossRefGoogle Scholar
  38. 38.
    Turk B, Dolenc I, Turk V, Bieth JG (1993) Kinetics of the pH-induced inactivation of human cathepsin L. Biochemistry 32:375–380PubMedCrossRefGoogle Scholar
  39. 39.
    Song J, Xu P, Xiang H, Su Z, Storer AC, Ni F (2000) The active-site residue Cys-29 is responsible for the neutral-pH inactivation and the refolding barrier of human cathepsin B FEBS Lett 475:157–162PubMedCrossRefGoogle Scholar
  40. 40.
    Reiners JJ, Jr., Caruso JA, Mathieu P, Chelladurai B, Yin XM, Kessel D (2002) Release of cytochrome c and activation of pro-caspase-9 following lysosomal photodamage involves Bid cleavage. Cell Death Differ 9:934–944PubMedCrossRefGoogle Scholar
  41. 41.
    Stoka V, Turk B, Schendel SL, et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157PubMedCrossRefGoogle Scholar
  42. 42.
    Heinrich M, Neumeyer J, Jakob M, et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563PubMedCrossRefGoogle Scholar
  43. 43.
    Cirman T, Oresic K, Mazovec GD, et al (2004) Selective disruption of lysosomes in HeLa cells triggers apoptosis mediated by cleavage of Bid by multiple papain-like lysosomal cathepsins. J Biol Chem 279:3578–3587PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Cathrine Nilsson
    • 1
  • Uno Johansson
    • 1
  • Ann-Charlotte Johansson
    • 1
  • Katarina Kågedal
    • 1
  • Karin Öllinger
    • 1
  1. 1.Division of Experimental Pathology, Faculty of Health SciencesLinköping UniversityLinköpingSweden

Personalised recommendations