Apoptosis

, Volume 11, Issue 6, pp 943–953 | Cite as

Curcumin protects PC12 cells against 1-methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway

  • J. Chen
  • X. Q. Tang
  • J. L. Zhi
  • Y. Cui
  • H. M. Yu
  • E. H. Tang
  • S. N. Sun
  • J. Q. Feng
  • P. X. Chen
Reports

Abstract

The aim of present study is to explore the cytoprotection of curcumin against 1-methyl-4-phenylpridinium ions (MPP+)-induced apoptosis and the molecular mechanisms underlying in PC12 cells. Our findings indicated that MPP+ significantly reduced the cell viability and induced apoptosis of PC12 cells. Curcumin protected PC12 cells against MPP+-induced cytotoxicity and apoptosis not only by inducing overexpression of Bcl-2, but also reducing the loss of mitochondrial membrane potential (MMP), an increase in intracellular reactive oxygen species (ROS) and overexpression of inducible nitric oxide synthase (iNOS). The selective iNOS inhibitor AG partly blocked MPP+-induced apoptosis of PC12 cells. The results of present study suggested that the cytoprotective effects of curcumin might be mediated, at least in part, by the Bcl-2-mitochondria-ROS-iNOS pathway. Because of its non-toxic property, curcumin could be further developed to treat the neurodegenerative diseases which are associated with oxidative stress, such as Parkinson’s disease (PD).

Keywords

apoptosis bcl-2 curcumin cytoprotection iNOS 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fahn S. Parkinsonism. In: Wyngaarden JB, Smith JR LH, ed. Cecil’s Textbook of Medicine. Philadelphia, PA: Saunders 1988; 2143–2147.Google Scholar
  2. 2.
    Jenner P. Oxidative mechanisms in nigral cell death in Parkinson’s disease. Mov Disord 1998; 13(Suppl 1): 24–34.PubMedGoogle Scholar
  3. 3.
    Jenner P, Olanow CW. Understanding cell death in Parkinson’s disease. Ann Neurol 1998; 44(3 Suppl 1): S72–84.PubMedGoogle Scholar
  4. 4.
    Lyras L, Perry RH, Perry EK, et al. Oxidative damage to proteins, lipids, and DNA in cortical brain regions from patients with dementia with Lewy bodies. J Neurochem 1998; 71(1): 302–312.PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang Y, Dawson VL, Dawson TM. Oxidative stress and genetics in the pathogenesis of Parkinson’s disease. Neurobiol Dis 2000; 7(4): 240–250.PubMedCrossRefGoogle Scholar
  6. 6.
    Heales SJ, Bolanos JP, Stewart VC, Brookes PS, Land JM, Clark JB. Nitric oxide, mitochondria and neurological disease. Biochim Biophys Acta 1999; 1410(2): 215–228.PubMedCrossRefGoogle Scholar
  7. 7.
    Qureshi GA, Baig S, Bednar I, Sodersten P, Forsberg G, Siden A. Increased cerebrospinal fluid concentration of nitrite in Parkinson’s disease. Neuroreport 1995; 6(12): 1642–1644.PubMedGoogle Scholar
  8. 8.
    Hunot S, Boissiere F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience 1996; 72(2): 355–363.PubMedCrossRefGoogle Scholar
  9. 9.
    Nadkarni KM. Indian material media. In: Nadkarni KM, ed. Bombay: Popular Prakashan 1976; 414–417.Google Scholar
  10. 10.
    Nurfina AN, Reksohadiprodjo MS, Timmerman H, Jenie UA, Sugiyanto D, Goot H van der. Synthesis of some symmetrical curcumin derivatives and their antiinflammatory activity. Eur J Med Chem. 1997; 32(4): 321–328.CrossRefGoogle Scholar
  11. 11.
    Ramsewak RS, DeWitt DL, Nair MG. Cytotoxicity, antioxidant and anti-inflammatory activities of curcumins I-III from Curcuma longa. Phytomedicine 2000; 7(4): 303–308.PubMedGoogle Scholar
  12. 12.
    Mehta K, Pantazis P, McQueen T, Aggarwal BB. Antiproliferative effect of curcumin (diferuloylmethane) against human breast tumor cell lines. Anticancer Drugs 1997; 8(5): 470–481.PubMedGoogle Scholar
  13. 13.
    Ramirez-Tortosa MC, Mesa MD, Aguilera MC, et al. Oral administration of a turmeric extract inhibits LDL oxidation and has hypocholesterolemic effects in rabbits with experimental atherosclerosis. Atherosclerosis 1999; 147(2): 371–378.PubMedCrossRefGoogle Scholar
  14. 14.
    Jaruga E, Bielak-Zmijewska A, Sikora E, et al. Glutathione-independent mechanism of apoptosis inhibition by curcumin in rat thymocytes. Biochem Pharmacol 1998; 56(8): 961–965.PubMedCrossRefGoogle Scholar
  15. 15.
    Somasundaram S, Edmund NA, Moore DT, et al. Dietary Curcumin Inhibits Chemotherapy-induced Apoptosis in Models of Human Breast Cancer. Cancer Res 2002; 62: 3868–3875.PubMedGoogle Scholar
  16. 16.
    Chan WH, Wu CC, Yu JS. Curcumin inhibits UV irradiation-induced oxidative stress and apoptotic biochemical changes in human epidermoid carcinoma A431 cells. J Cell Biochem 2003; 90(2): 327–338.PubMedCrossRefGoogle Scholar
  17. 17.
    Przedborski S, Vila M. MPTP: A review of its mechanisms of neurotoxicity. Clin Neurosci Res 2001; 1: 407–418.CrossRefGoogle Scholar
  18. 18.
    Sawada H, Ibi M, Kihara T, et al. Estradiol protects dopaminergic neurons in a MPP+ Parkinson’s disease model. Neuropharmacology 2002; 42(8): 1056–1064.PubMedCrossRefGoogle Scholar
  19. 19.
    Sheng GQ, Zhang JR, Pu XP, Ma J, Li CL. Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells. Eur J Pharmacol 2002; 451(2): 119–124.PubMedCrossRefGoogle Scholar
  20. 20.
    Kostic V, Przedborski S, Flaster E, Sternic N. Early development of levodopa-induced dyskinesias and response fluctuations in young-onset Parkinson’s disease. Neurology 1991; 41: 202–205.PubMedGoogle Scholar
  21. 21.
    Thiyagarajan M, Sharma SS. Neuroprotective effect of curcumin in middle cerebral artery occlusion induced focal cerebral ischemia in rats. Life Sci 2004; 74(8): 969–985.PubMedCrossRefGoogle Scholar
  22. 22.
    Ghoneim AI, Abdel-Naim AB, Khalifa AE, El-Denshary ES. Protective effects of curcumin against ischaemia/reperfusion insult in rat forebrain. Pharmacol Res 2002; 46(3): 273–279.PubMedCrossRefGoogle Scholar
  23. 23.
    Qing H, Xu H, Wei Z, Gibson K, Li XM. The ability of atypical antipsychotic drugs vs. haloperidol to protect PC12 cells against MPP+-induced apoptosis. Eur J Neurosci 2003; 17(8): 1563–1570.Google Scholar
  24. 24.
    Rossetti ZL, Sotgiu A, Sharp DE, Hadjiconstantinou M, Neff NH. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and free radicals in vitro. Biochem Pharmacol. 1988; 37(23): 4573–4574.PubMedCrossRefGoogle Scholar
  25. 25.
    Halasz AS, Palfi M, Tabi T, Magyar K, Szoko E. Altered nitric oxide production in mouse brain after administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydro-pyridin or methamphetamine. Neurochem Int 2004; 44(8): 641–646.PubMedCrossRefGoogle Scholar
  26. 26.
    Vila M, Jackson-Lewis V, Vukosavic S, et al. Bax ablation prevents dopaminergic neurodegeneration in the 1-methyl- 4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Pro Natl Acad Sci USA 2001; 98: 2837–2842.CrossRefGoogle Scholar
  27. 27.
    Jang JH, Surh YJ. Bcl-2 protects against Abeta(25-35)-induced oxidative PC12 cell death by potentiation of antioxidant capacity. Biochem Biophys Res Commun 2004; 320(3): 880–886.PubMedCrossRefGoogle Scholar
  28. 28.
    Cadet JL, Harrington B, Ordonez S. Bcl-2 overexpression attenuates dopamine-induced apoptosis in an immortalized neural cell line by suppressing the production of reactive oxygen species. Synapse 2000; 35(3): 228–233.CrossRefGoogle Scholar
  29. 29.
    Chen GG, Liang NC, Lee JF, et al. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis 2004; 9(5): 619–627.PubMedCrossRefGoogle Scholar
  30. 30.
    Yang L, Matthews RT, Schulz JB, et al. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyride Neurotoxicity Is Attenuated in Mice Overexpressing Bcl-2. J. Neurosci. 1998; 18: 8145–8152.PubMedGoogle Scholar
  31. 31.
    Offen D, Beart PM, Cheung NS, et al. Transgenic mice expressing human Bcl-2 in their neurons are resistant to 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity. Proc Natl Acad Sci USA 1998; 95: 5789–5794.CrossRefGoogle Scholar
  32. 32.
    Wu LY, Ding AS, Zhao T, Ma ZM, Wang FZ, Fan M. Involvement of increased stability of mitochondrial membrane potential and overexpression of Bcl-2 in enhanced anoxic tolerance induced by hypoxic preconditioning in cultured hypothalamic neurons. Brain Res 2004; 999(2): 149–154.PubMedCrossRefGoogle Scholar
  33. 33.
    Yang J, Liu X, Bhalla K, et al. Prevention of Apoptosis by Bcl-2: Release of Cytochrome c from Mitochondria Blocked. Science 1997; 275: 1129–1132.PubMedCrossRefGoogle Scholar
  34. 34.
    Kane DJ, Sarafian TA, Anton R, et al. Bcl-2 inhibition of neural death: Decreased generation of reactive oxygen species. Science 1993; 262(5137): 1274–1277.PubMedGoogle Scholar
  35. 35.
    Bruce-Keller AJ, Begley JG, Fu W, et al. Bcl-2 protects isolated plasma and mitochondrial membranes against lipid peroxidation induced by hydrogen peroxide and amyloid beta-peptide. J Neurochem 1998; 70(1): 31–39.PubMedCrossRefGoogle Scholar
  36. 36.
    Deng G, Su JH, Ivins KJ, Houten BV, Cotman CW. Bcl-2 facilitates recovery from DNA damage after oxidative stress. Exp Neurol, Sep 1999; 159(1): 309–318.CrossRefGoogle Scholar
  37. 37.
    Akao Y, Otsuki Y, Kataoka S, Ito Y, Tsujimoto Y. Multiple subcellular localization of bcl-2: detection in nuclear outer membrane, endoplasmic reticulum membrane, and mitochondrial membranes. Cancer Res. 1994; 54: 2468–2471.PubMedGoogle Scholar
  38. 38.
    Przedborski S, Jackson-Lewis V, Yokoyama R, Shibata T, Dawson VL, Dawson TM. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Pro Natl Acad Sci USA 1996; 93: 4565–4571.CrossRefGoogle Scholar
  39. 39.
    Hantraye P, Brouillet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 1996; 2(9): 1017–1021.PubMedCrossRefGoogle Scholar
  40. 40.
    Matthews RT, Yang L, Beal MF. S-Methylthiocitrulline, a neuronal nitric oxide synthase inhibitor, protects against malonate and MPTP neurotoxicity. Exp Neurol 1997; 143(2): 282–286.PubMedCrossRefGoogle Scholar
  41. 41.
    Schulz JB, Matthews RT, Muqit MM, Browne SE, Beal MF. Inhibition of neuronal nitric oxide synthase by 7-nitroindazole protects against MPTP-induced neurotoxicity in mice. J Neurochem 1995; 64(2): 936–939.PubMedCrossRefGoogle Scholar
  42. 42.
    Hantraye P, Brouillet E, Ferrante R, et al. Inhibition of neuronal nitric oxide synthase prevents MPTP-induced parkinsonism in baboons. Nat Med 1996; 2(9): 1017–1021.PubMedCrossRefGoogle Scholar
  43. 43.
    Rao CV, Kawamori T, Hamid R, Reddy BS. Chemoprevention of colonic aberrant crypt foci by an inducible nitric oxide synthase-selective inhibitor. Carcinogenesis 1999; 20: 641–644.PubMedCrossRefGoogle Scholar
  44. 44.
    Iravani MM, Kashefi K, Mander P, Rose S, Jenner P. Involvement of inducible nitric oxide synthase in inflammation-induced dopaminergic neurodegeneration. Neuroscience 2002; 110(1): 49–58.PubMedCrossRefGoogle Scholar
  45. 45.
    Caivano M. Role of MAP kinase cascades in inducing arginine transporters and nitric oxide synthetase in RAW264 macrophages. FEBS Lett 1998; 429(3): 249–253.PubMedCrossRefGoogle Scholar
  46. 46.
    Cheng A, Chan SL, Milhavet O, Wang S, Mattson MP. p38 MAP Kinase Mediates Nitric Oxide-induced Apoptosis of Neural Progenitor Cells. J Biol Chem. 2001; 276: 43320–43327.PubMedCrossRefGoogle Scholar
  47. 47.
    Chen GG, Liang NC, Lee JF, et al. Over-expression of Bcl-2 against Pteris semipinnata L-induced apoptosis of human colon cancer cells via a NF-kappa B-related pathway. Apoptosis 2004; 9(5): 619–627.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • J. Chen
    • 1
    • 2
  • X. Q. Tang
    • 1
    • 3
  • J. L. Zhi
    • 1
  • Y. Cui
    • 1
  • H. M. Yu
    • 1
  • E. H. Tang
    • 1
  • S. N. Sun
    • 1
  • J. Q. Feng
    • 1
    • 4
  • P. X. Chen
    • 1
  1. 1.Department of PhysiologyZhongshan Medical College, Sun Yat-sen UniversityGuangzhouP. R. China
  2. 2.Department of MorphologyMedical College of China Three Gorges UniversityYichangP. R. China
  3. 3.Department of PhysiologyMedical College of Nahua UniversityHengyangP. R. China
  4. 4.Department of PhysiologyZhongshan Medical College, Sun Yat-sen UniversityGuangzhouP. R. China

Personalised recommendations