, Volume 11, Issue 4, pp 473–485 | Cite as

Bioenergetic aspects of apoptosis, necrosis and mitoptosis



In this review I summarize interrelations between bioenergetic processes and such programmed death phenomena as cell suicide (apoptosis and necrosis) and mitochondrial suicide (mitoptosis). The following conclusions are made. (I) ATP and rather often mitochondrial hyperpolarization (i.e. an increase in membrane potential, ΔΨ) are required for certain steps of apoptosis and necrosis. (II) Apoptosis, even if it is accompanied by ΔΨ and [ATP] increases at its early stage, finally results in a ΔΨ collapse and ATP decrease. (III) Moderate (about three-fold) lowering of [ATP] for short and long periods of time induces apoptosis and necrosis, respectively. In some types of apoptosis and necrosis, the cell death is mediated by a ΔΨ-dependent overproduction of ROS by the initial (Complex I) and the middle (Complex III) spans of the respiratory chain. ROS initiate mitoptosis which is postulated to rid the intracellular population of mitochondria from those that are ROS overproducing. Massive mitoptosis can result in cell death due to release to cytosol of the cell death proteins normally hidden in the mitochondrial intermembrane space.


apoptosis bioenergetics mitochondria mitoptosis necrosis reactive oxygen species 



electric potential difference across the inner mitochondrial membrane


apoptosis-inducing factor


apoptotic protease-activating factor 1


cyclosporin A


c-Jun NH2 terminal kinase




permeability transition pore


reactive nitrogen species


reactive oxygen species


tumor necrosis factor α


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184: 1331–1341.PubMedCrossRefGoogle Scholar
  2. 2.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 1996; 86: 147–157.PubMedCrossRefGoogle Scholar
  3. 3.
    Yang J, Liu X, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997; 275: 1129–1132.PubMedCrossRefGoogle Scholar
  4. 4.
    Kluck RM, Bossy-Wetzel E, Green DD, Newmeyer DD. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 1997; 275: 1132–1136.PubMedCrossRefGoogle Scholar
  5. 5.
    Skulachev VP. Programmed death phenomena: From organelle to organism, Ann NY Acad Sci 2002; 959: 214–237.PubMedCrossRefGoogle Scholar
  6. 6.
    Kass GE, Eriksson JE, Weis M, Orrenius S, Chow SC. Chromatin condensation during apoptosis requires ATP. Biochem J 1996; 318: 749–752.PubMedGoogle Scholar
  7. 7.
    Leist M, Single B, Castoldi AF, Kuhnle S, Nicotera P. Intracellular adenosine triphosphate (ATP) concentration: A switch in the decision between apoptosis and necrosis. J Exp Med 1997; 185: 1481–1486.PubMedCrossRefGoogle Scholar
  8. 8.
    Eguchi Y, Shimizu S, Tsujimoto Y. Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 1997; 57: 1835–1840.PubMedGoogle Scholar
  9. 9.
    Nicotera P, Leist M, Ferrando-May E. Intracellular ATP, a switch in the decision between apoptosis and necrosis, Toxicol Lett 1998; 102–103: 139–142.PubMedCrossRefGoogle Scholar
  10. 10.
    Nicotera P, Leist M, Fava E, Berliocchi L, Volbracht C. Energy requirement for caspase activation and neuronal cell death. Brain Pathol 2000; 10: 276–282.PubMedCrossRefGoogle Scholar
  11. 11.
    Atlante A, Giannattasio S, Bobba A, et al. An increase in the ATP levels occurs in cerebellar granule cells en route to apoptosis in which ATP derives from both oxidative phosphorylation and anaerobic glycolysis. Biochim Biophys Acta 2005; 1708: 50–62.PubMedCrossRefGoogle Scholar
  12. 12.
    Jiang X, Wang X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 2000; 275: 31199–31203.PubMedCrossRefGoogle Scholar
  13. 13.
    Genini D, Budihardjo I, Plunkett W, et al. Nucleotide requirements for the in vitro activation of the apoptosis protein-activating factor-1-mediated caspase pathway. J Biol Chem 2000; 275: 29–34.PubMedCrossRefGoogle Scholar
  14. 14.
    Baines CP, Molkentin JD. Stress signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 2005; 38: 47–62.PubMedCrossRefGoogle Scholar
  15. 15.
    Sanchez-Capelo A. Dual role for TGF-beta1 in apoptosis, Cytokine Growth Factor Rev 2005; 16: 15–34.PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto K, Ichijo H, Korsmeyer SJ. BCL-2 is phosphorylated and inactivated by an ASK1/Jun N-terminal protein kinase pathway normally activated at G(2)/M. Mol Cell Biol 1999; 19: 8469–8478.PubMedGoogle Scholar
  17. 17.
    Fan M, Goodwin M, Vu T, Brantley-Finley C, Gaarde WA, Chambers TC. Vinblastine-induced phosphorylation of Bcl-2 and Bcl-XL is mediated by JNK and occurs in parallel with inactivation of the Raf-1/MEK/ERK cascade. J Biol Chem 2000; 275: 29980–29985.PubMedCrossRefGoogle Scholar
  18. 18.
    Donovan N, Becker EB, Konishi Y, Bonni A. JNK phosphorylation and activation of BAD couples the stress-activated signaling pathway to the cell death machinery. J Biol Chem 2002; 277: 40944–40999.PubMedCrossRefGoogle Scholar
  19. 19.
    Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci USA 2003; 100: 2432–2437.PubMedCrossRefGoogle Scholar
  20. 20.
    Deng Y, Ren X, Yang L, Lin Y, Wu X. A JNK-dependent pathway is required for TNFα-induced apoptosis. Cell 2003; 115: 61–70.PubMedCrossRefGoogle Scholar
  21. 21.
    Kanda H, Miura M. Regulatory roles of JNK in programmed cell death, J Biochem (Tokyo) 2004; 136: 1–6.Google Scholar
  22. 22.
    Liu J, Lin A. Role of JNK activation in apoptosis: A double-edged sword. Cell Res 2005; 15: 36–42.PubMedCrossRefGoogle Scholar
  23. 23.
    Varfolomeev EE, Ashkenazi A. Tumor necrosis factor: An apoptosis JuNKie? Cell 2004; 116: 491–497.PubMedCrossRefGoogle Scholar
  24. 24.
    Skulachev VP, Bakeeva LE, Chernyak BV, et al. Thread-grain transition of mitochondrial reticulum as a step of mitoptosis and apoptosis. Mol Cell Biochem 2004; 256–257: 341–358.PubMedCrossRefGoogle Scholar
  25. 25.
    Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001; 1: 515–525.PubMedCrossRefGoogle Scholar
  26. 26.
    Youle RJ, Karbowski M. Mitochondrial fission in apoptosis, Nat Rev Mol Cell Biol 2005; 6: 657–663.PubMedCrossRefGoogle Scholar
  27. 27.
    Skulachev VP. Mitochondrial filaments and clusters as intracellular power-transmitting cables. Trends Biochem Sci 2001; 26: 23–29.PubMedCrossRefGoogle Scholar
  28. 28.
    De Vos K, Severin F, Van Herreweghe F, Goossens V, Hyman A, Grooten J. Tumor necrosis factor inhibits kinesin-mediated transport of mitochondria by hyperphosphorylation of kinesin light chain. J Cell Biol 2000; 149: 1207–1214.PubMedCrossRefGoogle Scholar
  29. 29.
    Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: The calcium-apoptosis link. Nat Rev Mol Cell Biol 2003; 4: 552–565.PubMedCrossRefGoogle Scholar
  30. 30.
    Butow RA, Avadhani NG. Mitochondrial signaling: The retrograde response, Mol Cell 2004; 14: 1–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Skulachev VP. Why are mitochondria involved in apoptosis? Permeability transition pores and apoptosis as selective mechanisms to eliminate superoxide-producing mitochondria and cell. FEBS Lett 1996; 397: 7–10.PubMedCrossRefGoogle Scholar
  32. 32.
    Saran M. To what end does nature produce superoxide? NADPH oxidase as an autocrine modifier of membrane phospholipids generating paracrine lipid messengers. Free Radic Res 2003; 37: 1045–1059.PubMedCrossRefGoogle Scholar
  33. 33.
    Skulachev VP. Aging and the programmed death phenomena. In: Nystrom T, Osiewacz HD, eds. Topics in Current Genetics. Model systems in ageing, vol. 3. Berlin Heidelberg: Springer-Verlag, 2003: 191–238.Google Scholar
  34. 34.
    Bianchi P, Pimentel DR, Murphy MP, Colucci WS, Parini A. A new hypertrophic mechanism of serotonin in cardiac myocytes: receptor-independent ROS generation. FASEB J 2005; 19: 641–6413.PubMedGoogle Scholar
  35. 35.
    Korshunov SS, Skulachev VP, Starkov AA. High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett 1997; 416: 15–18.PubMedCrossRefGoogle Scholar
  36. 36.
    Korshunov SS, Korkina OV, Ruuge EK, Skulachev VP, Starkov AA. Fatty acids as natural uncouplers preventing generation of O2 −• and H2O2 by mitochondria in the resting state. FEBS Lett 1998; 435: 215–218.PubMedCrossRefGoogle Scholar
  37. 37.
    Vinogradov AD, Grivennikova VG. Generation of superoxide-radical by the NADH:Ubiquinone oxidoreductase of heart mitochondria. Biochemistry (Moscow) 2005; 70: 120–127.CrossRefGoogle Scholar
  38. 38.
    Kudin AP, Bimpong-Buta NY, Vielhaber S, Elger CE, Kunz WS. Characterization of superoxide-producing sites in isolated brain mitochondria. J Biol Chem 2004; 279: 4127–4135.PubMedCrossRefGoogle Scholar
  39. 39.
    Kudin AP, Debska-Vielhaber G, Kunz WS. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother 2005; 59: 163–168.PubMedCrossRefGoogle Scholar
  40. 40.
    Skulachev VP. Role of uncoupled and non-coupled oxidations in maintenance of safely low levels of oxygen and its one-electron reductants. Quart Rev Biophys 1996; 29: 169–202.CrossRefGoogle Scholar
  41. 41.
    Banki K, Hutter E, Gonchoroff NJ, Perl A. Elevation of mitochondrial transmembrane potential and reactive oxygen intermediate levels are early events and occur independently from activation of caspases in Fas signaling. J Immunol 1999; 162: 1466–1479.PubMedGoogle Scholar
  42. 42.
    Li PF, Dietz R, von Harsdorf R. p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. EMBO J 1999; 18: 6027–6036.PubMedCrossRefGoogle Scholar
  43. 43.
    Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB. Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 1999; 3: 159–167.PubMedCrossRefGoogle Scholar
  44. 44.
    Gottlieb E, Vander Heiden MG, Thompson CB. Bcl-x(L) prevents the initial decrease in mitochondrial membrane potential and subsequent reactive oxygen species production during tumor necrosis factor alpha-induced apoptosis. Mol Cell Biol 2000; 20: 5680–5689.PubMedCrossRefGoogle Scholar
  45. 45.
    Sanchez-Alcazar JA, Ault JG, Khodjakov A, Schneider E. Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in Jurkat cells. Cell Death Differ 2000; 7: 1090–1100.PubMedCrossRefGoogle Scholar
  46. 46.
    Scarlett JL, Sheard PW, Hughes G, Ledgerwood EC, Ku HH, Murphy MP. Changes in mitochondrial membrane potential during staurosporine-induced apoptosis in Jurkat cells. FEBS Lett 2000; 475: 267–272.PubMedCrossRefGoogle Scholar
  47. 47.
    Matarrese P, Testa U, Cauda R, Vella S, Gambardella L, Malorni W. Expression of P-170 glycoprotein sensitizes lymphoblastoid CEM cells to mitochondria-mediated apoptosis. Biochem J 2001; 355: 587–595.PubMedGoogle Scholar
  48. 48.
    Piacentini M, Farrace MG, Piredda L, et al. Transglutaminase overexpression sensitizes neuronal cell lines to apoptosis by increasing mitochondrial membrane potential and cellular oxidative stress. J Neurochem 2002; 81: 1061–1072.PubMedCrossRefGoogle Scholar
  49. 49.
    Gergely P Jr, Grossman C, Niland B, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus. Arthritis Rheum 2002; 46: 175–190.PubMedCrossRefGoogle Scholar
  50. 50.
    Nagy G, Koncz A, Perl A. T cell activation-induced mitochondrial hyperpolarization is mediated by Ca2+- and redox-dependent production of nitric oxide. J Immunol 2003; 171: 5188–5197.PubMedGoogle Scholar
  51. 51.
    Skulachev VP. Mitochondrial physiology and pathology; concepts of programmed death of organelles, cells and organisms, Mol Asp Med 1999; 20: 139–184; 51a. Longo VP, Mitteldorf J, Skulachev VP. Programmed and altruistic ageing. Nature Rev Genetics 2005; 6: 862–872.Google Scholar
  52. 52.
    Madeo F, Fröhlich E, Ligr M, et al. Oxygen stress: A regulator of apoptosis in yeast. J Cell Biol 1999; 145: 757–767.PubMedCrossRefGoogle Scholar
  53. 53.
    Ludovico P, Rodrigues F, Almeida A, Silva MT, Barrientos A, Corte-Real M. Cytochrome c release and mitochondria involvement in programmed cell death induced by acetic acid in Saccharomyces cerevisiae. Mol Biol Cell 2002; 13: 2598–2606.PubMedCrossRefGoogle Scholar
  54. 54.
    Narasimhan ML, Damsz B, Coca MA, et al. A plant defense response effector induces microbial apoptosis. Mol Cell 2001; 8: 921–930.PubMedCrossRefGoogle Scholar
  55. 55.
    Severin FF, Hyman AA. Pheromone induces programmed cell death in S. cerevisiae. Curr Biol 2002; 12: R233–R235.PubMedCrossRefGoogle Scholar
  56. 56.
    Pozniakovsky AI, Knorre DA, Markova OV, Hyman AA, Skulachev VP, Severin FF. Role of mitochondria in the pheromone- and amiodarone-induced programmed death of yeast. J Cell Biol 2005; 168: 257–269.PubMedCrossRefGoogle Scholar
  57. 57.
    Gross A, Pilcher K, Blachly-Dyson E, et al. Biochemical and genetic analysis of the mitochondrial response of yeast to BAX and BCL-X(L). Mol Cell Biol 2000; 20: 3125–3136.PubMedCrossRefGoogle Scholar
  58. 58.
    Rasmusson AG, Moller IM. Effect of calcium ions and inhibitors on internal NAD(P)H dehydrogenases in plant mitochondria. Eur J Biochem 1991; 202: 617–623.PubMedCrossRefGoogle Scholar
  59. 59.
    Perez-Vazquez V, Saavedra-Molina A, Uribe S. In Saccharomyces cerevisiae, cations control the fate of the energy derived from oxidative metabolism through the opening and closing of the yeast mitochondrial unselective channel. J Bioenerg Biomembr 2003; 35: 231–241.PubMedCrossRefGoogle Scholar
  60. 60.
    Varbiro G, Toth A, Tapodi A, Veres B, Sumegi B, Gallyas F Jr. Concentration dependent mitochondrial effect of amiodarone. Biochem Pharmacol 2003; 65: 1115–1128.PubMedCrossRefGoogle Scholar
  61. 61.
    Ohsumi Y, Anraku Y. Specific induction of Ca2+ transport activity in MATa cells of Saccharomyces cerevisiae by a mating pheromone, alpha factor. J Biol Chem 1985; 260: 10482–10486.PubMedGoogle Scholar
  62. 62.
    Wissing S, Ludovico P, Herker E, et al. An AIF orthologue regulates apoptosis in yeast. J Cell Biol 2004; 166: 969–974.PubMedCrossRefGoogle Scholar
  63. 63.
    Peachman KK, Lyles DS, Bass DA. Mitochondria in eosinophils: functional role in apoptosis but not respiration. Proc Natl Acad Sci USA 2001; 98: 1717–1722.PubMedCrossRefGoogle Scholar
  64. 64.
    Izyumov DS, Avetisyan AV, Pletjushkina OY, et al. “Wages of fear”: transient threefold decrease in intracellular ATP level imposes apoptosis. Biochim Biophys Acta 2004; 1658: 141–147.PubMedCrossRefGoogle Scholar
  65. 65.
    Gabai VL, Meriin AB, Yaglom JA, Wei JY, Mosser DD, Sherman MY. Suppression of stress kinase JNK is involved in HSP72-mediated protection of myogenic cells from transient energy deprivation. J Biol Chem 2000; 275: 38088–38094.PubMedCrossRefGoogle Scholar
  66. 66.
    Yaglom YA, Ekhterae D, Gabai VL, Sherman MY. Regulation of necrosis of H9c2 myogenic cells upon transient energy deprivation. Rapid deenergization of mitochondria precedes necrosis and is controlled by reactive oxygen species, stress kinase JNK, HSP72 and ARC. J Biol Chem 2003; 278: 50483–50496.PubMedCrossRefGoogle Scholar
  67. 67.
    Skulachev VP. Possible role of reactive oxygen species in antiviral defense, Biochemistry (Moscow) 1998; 63: 1438–1440.Google Scholar
  68. 68.
    Reznikov K, Kolesnikova AL, Pramanik A, et al. Clustering of apoptotic cells via bystander killing by peroxides. FASEB J 2000; 14: 1754–1764.PubMedCrossRefGoogle Scholar
  69. 69.
    Pletjushkina OY, Fetisova EK, Lyamzaev KG, et al. Long-distance apoptotic killing of cells is mediated by hydrogen peroxide in a mitochondrial ROS-dependent fashion. Cell Death Differ 2005; 12: 1442–1444.PubMedCrossRefGoogle Scholar
  70. 70.
    Kelso GF, Porteous CM, Coulter CV, et al. Selective targeting of a redox-active ubiquinone to mitochondria within cells: antioxidant and antiapoptotic properties. J Biol Chem 2001; 276: 4588–4596.PubMedCrossRefGoogle Scholar
  71. 71.
    Jauslin ML, Leier T, Smith RAJ, Muphy M. Mitochondria-targeted antioxidants protect Friedreich Ataxia fibroblasts from endogenous oxidative stress more effectively than untargeted antioxidants. FASEB J 2003; 17: 1972–1974.PubMedGoogle Scholar
  72. 72.
    Liberman EA, Topali VP, Tsofina LM, Jasaitis AA, Skulachev VP. Mechanism of coupling of oxidative phosphorylation and the membrane potential of mitochondria. Nature 1969: 222: 1076–1078.PubMedCrossRefGoogle Scholar
  73. 73.
    Skulachev VP. How to clean the dirtiest place in the cell: cationic antioxidants as intramitochondrial ROS scavengers. IUBMB Life 2005; 57: 305–310.PubMedCrossRefGoogle Scholar
  74. 74.
    Shchepina LA, Pletjushkina OY, Avetisyan AV, et al. Oligomycin, inhibitor of the F 0 part of H+-ATP-synthase, suppresses the TNF-induced apoptosis. Oncogene 2002; 21: 8149–8157.PubMedCrossRefGoogle Scholar
  75. 75.
    Zorov DB, Filburn CR, Klotz LO, Zweier JL, Sollott SJ. Reactive oxygen species (ROS)-induced ROS release: a new phenomenon accompanying induction of the mitochondrial permeability transition in cardiac myocytes. J Exp Med 2000; 192: 1001–1014.PubMedCrossRefGoogle Scholar
  76. 76.
    Green DR. Apoptotic pathways: ten minutes to dead? Cell 2005; 121: 671–674.PubMedCrossRefGoogle Scholar
  77. 77.
    Chipuk JE, Green DR. Do inducers of apoptosis trigger caspase-independent cell death, Nat Rev Mol Cell Biol 2005; 6: 268–275.PubMedCrossRefGoogle Scholar
  78. 78.
    Nakagawa T, Shimizu S, Watanabe T, et al. Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005; 434: 652–658.PubMedCrossRefGoogle Scholar
  79. 79.
    Baines CP, Kaiser RA, Purcell NH, et al. Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005; 434: 658–662.PubMedCrossRefGoogle Scholar
  80. 80.
    Skulachev VP. Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1998; 1363: 100–124.PubMedCrossRefGoogle Scholar
  81. 81.
    Zorov DB, Kinnally KW, Tedesci H. Voltage activation of heart inner mitochondrial membrane channels. J Bioenerg Biomembr 1992; 24: 119–124.PubMedCrossRefGoogle Scholar
  82. 82.
    Zoratti M, Szabo I. The mitochondrial permeability transition. Biochim Biophys Acta 1995; 1241: 139–176.PubMedGoogle Scholar
  83. 83.
    Skulachev VP. Membrane Bioenergetics. Berlin: Springer-Verlag, 1988.Google Scholar
  84. 84.
    Gardner PR. Superoxide-driven aconitase FE-S center cycling. Biosci Rep 1997; 17: 33–42.PubMedCrossRefGoogle Scholar
  85. 85.
    Gardner PR, Fridovich I. Superoxide sensitivity of the Escherichia coli aconitase. J Biol Chem 1991; 266: 19328–19333.PubMedGoogle Scholar
  86. 86.
    Skulachev VP. Membrane-linked systems preventing superoxide formation. Biosci Rep 1997; 17: 347–366.PubMedCrossRefGoogle Scholar
  87. 87.
    Chen XJ, Wang X, Kaufman BA, Butow RA. Aconitase couples metabolic regulation to mitochondrial DNA maintenance. Science 2005; 307: 714–717.PubMedCrossRefGoogle Scholar
  88. 88.
    Shadel GS. Mitochondrial DNA, aconitase ‘wraps’ it up. Trends Biochem Sci 2005; 30: 294–296.PubMedCrossRefGoogle Scholar
  89. 89.
    Elmore SP, Qian T, Grissom SF, Lemasters JJ. The mitochondrial permeability transition initiates autophagy in rat hepatocytes. FASEB J 2001; 15: 2286–2287.PubMedGoogle Scholar
  90. 90.
    Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005; 8: 3–5.PubMedCrossRefGoogle Scholar
  91. 91.
    Kissova I, Deffieu M, Manon S, Camougrand N. Uth1p is involved in the autophagic degradation of mitochondria. J Biol Chem 2004; 279: 39068–39074.PubMedCrossRefGoogle Scholar
  92. 92.
    Kennedy BK, Austriaco NR, Zhang J, Guarente L. Mutation in the silencing gene SIR4 can delay aging in S. cerevisiae. Cell 1995; 80: 485–496.PubMedCrossRefGoogle Scholar
  93. 93.
    Kennedy BK, Guarente L. Genetic analysis of aging in Saccharomyces cerevisiae. Trends Genet 1996; 12: 355–359.PubMedCrossRefGoogle Scholar
  94. 94.
    Fletcher GC, Xue L, Passingham SK, Tolkovsky AM. Death commitment point is advanced by axotomy in sympathetic neurons. J Cell Biol 2000; 150: 741–754.PubMedCrossRefGoogle Scholar
  95. 95.
    Xue L, Fletcher GC, Tolkovsky AM. Mitochondria are selectively eliminated from eukaryotic cells after blockade of caspases during apoptosis, Current Biol 2001; 11: 361–365.CrossRefGoogle Scholar
  96. 96.
    Levy MR. Effects of some environmental factors on the biochemistry, physiology, and metabolism of Tetrahymena, In: Elliott AM, ed. Biology of Tetrahymena. Stroudsburg, Pennsylvania: Dowden, Hutchingson & Ross, Inc, 1973: 227–258.Google Scholar
  97. 97.
    Lum JJ, Bauer DE, Kong M, et al. Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005; 2: 237–248.CrossRefGoogle Scholar
  98. 98.
    Lyamzaev KG, Pletjushkina OY, Saprunova VB, Bakeeva LE, Chernyak BV, Skulachev VP. Selective elimination of mitochondria from living cells induced by inhibitors of bioenergetic functions. Biochem Soc Trans 2004; 32: 1070–1071.PubMedCrossRefGoogle Scholar
  99. 99.
    De Vos KJ, Allan VJ, Grierson AJ, Sheetz MP. Mitochondrial function and actin regulate dynamin-related protein 1-dependent mitochondrial fission. Curr Biol 2005; 15: 678–683.PubMedCrossRefGoogle Scholar
  100. 100.
    Legros F, Lombes A, Frachon P, Rojo M. Mitochondrial fusion in human cells is efficient, requires the inner membrane potential, and is mediated by mitofusins. Mol Biol Cell 2002; 13: 4343–4354.PubMedCrossRefGoogle Scholar
  101. 101.
    Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL. A mutational epitope for cytochrome c binding to the apoptosis protease activation factor-1. J Biol Chem 2001; 276: 13034–13038.PubMedCrossRefGoogle Scholar
  102. 102.
    Abdullaev ZKh, Bodrova ME, Chernyak BV, et al. A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem J 2002; 362: 749–754.PubMedCrossRefGoogle Scholar
  103. 103.
    Hao Z, Duncan GS, Chang CC, et al. Specific ablation of the apoptotic functions of cytochrome C reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell 2005; 121: 579–591.PubMedCrossRefGoogle Scholar
  104. 104.
    Sharonov GV, Feofanov AV, Bocharova OV, et al. Comparative analysis of proapoptotic activity of cytochrome c mutants in living cells. Apoptosis 2005; 10: 797–808.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  1. 1.Department of Bioenergetics, Belozersky Institute of Physico-Chemical Biology and School of Bioengineering and BioinformaticsMoscow State UniversityMoscowRussia
  2. 2.Department of Bioenergetics, Belozersky Institute of Physico-Chemical BiologyMoscow State UniversityMoscowRussia

Personalised recommendations