Advertisement

Apoptosis

, Volume 11, Issue 5, pp 781–787 | Cite as

HIV protease inhibitor therapy reverses neutrophil apoptosis in AIDS patients by direct calpain inhibition

  • M. Lichtner
  • F. Mengoni
  • C. M. Mastroianni
  • I. Sauzullo
  • R. Rossi
  • M. De Nicola
  • V. Vullo
  • L. GhibelliEmail author
Article

Abstract

The reduction of neutrophils apoptosis is one of the main non-virological effects of protease inhibitor (PI) therapy. We explore here whether this may be due to the cross-inhibition of calpain, an important non-virological target of PI in vitro. We found that the high basal level of neutrophils apoptosis in AIDS patients is strictly related to an increased intracellular calpain activity. Both alterations disappear after PI treatment, with apoptosis and calpain going back to normal levels after 3 months of PI therapy, independently of a proficient antiviral effect. PI drugs exerted a similar antiapoptotic and anticalpain effects on neutrophils in ex vivo experiments: strikingly, the effects were mimicked by commercially available calpain inhibitors. This study shows, for the first time, that apoptosis of neutrophils in AIDS patients is mediated by calpain, and that neutrophil survival in PI treated AIDS patients is a non virological effect due to calpain inhibition.

Keywords

AIDS apoptosis calpain HIV protease indinavir polymorphonucleated leukocytes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Palella FJ Jr, Delaney KM, Moorman AC, et al. Declining morbidity and mortality among patients with advanced human immunodeficiency virus infection. HIV, Outpatient Study, Investigators N Engl, J Med 1998; 338: 853–860.Google Scholar
  2. 2.
    Meroni L, Varchetta S, Manganaro D, et al. Reduced levels of CD4 cell spontaneous apoptosis in human immundeficiency virus-infected patients with discordant response to protease inhibitors. J Infect Dis 2002; 186: 143–144.PubMedCrossRefGoogle Scholar
  3. 3.
    Lecossier D, Bouchonnet F, Schneider P, Clavel F, Hance AJ; Centre de Recherche Integre sur le VIH, Bichat-Claude, Bernard. Discordant increases in CD4+ T cells in human immunodeficiency virus-infected patients experiencing virologic treatment failure: Role of changes in thymic output and T cell death. J Infect Dis 2001; 183: 1009–1016.PubMedCrossRefGoogle Scholar
  4. 4.
    Pajonk F, Himmelsbach J, Riess K, Sommer A, McBride WH. The human immunodeficiency virus (HIV)-1 protease inhibitor saquinavir inhibits proteasome function and causes apoptosis and radiosensitization in non-HIV-associated human cancer cells. Cancer Res 2002; 62: 5230–5235.PubMedGoogle Scholar
  5. 5.
    Estaquier J, Lelievre JD, Petit F, et al. Effects of antiretroviral drugs on human immunodeficiency virus type 1-induced CD4(+) T-cell death. J Virol 2002; 76: 5966–5973.PubMedCrossRefGoogle Scholar
  6. 6.
    Berthold HK, Parhofer KG, Ritter MM, et al. Influence of protease inhibitor therapy on lipoprotein metabolism. J Intern Med 1999; 246: 567–575.PubMedCrossRefGoogle Scholar
  7. 7.
    Gruber A, Wheat JC, Kuhen KL, Looney DJ, Wong-Staal F. Differential effects of HIV-1 protease inhibitors on dendritic cell immunophenotype and function. J Biol Chem 2001; 276: 47840–47843.PubMedGoogle Scholar
  8. 8.
    Gaedicke S, Firat-Geier E, Constantiniu O, et al. Antitumor effect of the human immunodeficiency virus protease inhibitor ritonavir: induction of tumor-cell apoptosis associated with perturbation of proteasomal proteolysis. Cancer Res 2002; 62: 6901–6908.PubMedGoogle Scholar
  9. 9.
    Ghibelli L, Mengoni F, Lichtner M, et al. Anti-apoptotic effect of HIV protease inhibitors via direct inhibition of calpain. Biochem Pharmacol 2003; 66: 1505–1512.PubMedCrossRefGoogle Scholar
  10. 10.
    Badley AD. In vitro and in vivo effects of HIV protease inhibitors on apoptosis. Cell Death Differ 2005; (Suppl 1): 924–931.Google Scholar
  11. 11.
    Phenix BN, Cooper C, Owen C, Badley AD. Modulation of apoptosis by HIV protease inhibitors. Apoptosis 2002; 7: 295–312.PubMedCrossRefGoogle Scholar
  12. 12.
    Chan SL, Mattson MP. Caspase and calpain substrates: roles in synaptic plasticity and cell death. J Neurosci Res 1999; 58: 167–190.PubMedCrossRefGoogle Scholar
  13. 13.
    Pitrak DL, Tsai HC, Mullane KM, Sutton SH, Stevens P. Accelerated neutrophil apoptosis in the acquired immunodeficiency syndrome. J Clin Invest 1996; 98: 2714–2719.PubMedCrossRefGoogle Scholar
  14. 14.
    Mastroianni CM, Lichtner M, Mengoni F, et al. Improvement in neutrophil and monocyte function during highly active antiretroviral treatment of HIV-1-infected patients. AIDS 1999; 13: 883–890.PubMedCrossRefGoogle Scholar
  15. 15.
    Mastroianni CM, Mengoni F, Lichtner M, et al. Ex vivo and in vitro effect of human immunodeficiency virus protease inhibitors on neutrophil apoptosis. J Infect Dis 2000; 182: 1536–1539.PubMedCrossRefGoogle Scholar
  16. 16.
    Cossarizza A, Mussini C, Borghi V, et al. Apoptotic features of peripheral blood granulocytes and monocytes during primary, acute HIV infection. Exp Cell Res 1999; 247: 304–311.PubMedCrossRefGoogle Scholar
  17. 17.
    Squier MK, Sehnert AJ, Sellins KS, Malkinson AM, Takano E, Cohen JJ. Calpain and calpastatin regulate neutrophil apoptosis. J Cell Physiol 1999; 178: 311–319.PubMedCrossRefGoogle Scholar
  18. 18.
    Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998; 273: 30530–30536.PubMedCrossRefGoogle Scholar
  19. 19.
    Komiyama T, Ray CA, Pickup DJ, et al. Inhibition of interleukin-1 beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 1994; 269: 19331–19337.PubMedGoogle Scholar
  20. 20.
    Andre P, Groettrup M, Klenerman P, et al. An inhibitor of HIV-1 protease modulates proteasome activity, antigen presentation, and T cell responses. Proc Natl Acad Sci USA 1998; 95: 13120–13124.PubMedCrossRefGoogle Scholar
  21. 21.
    Piccinini M, Rinaudo MT, Chiapello N, et al. The human 26S proteasome is a target of antiretroviral agents. AIDS 2002; 16: 693–700.PubMedCrossRefGoogle Scholar
  22. 22.
    Wan W, DePetrillo PB. Ritonavir inhibition of calcium-activated neutral proteases. Biochem Pharmacol 2002; 63: 1481–1484.PubMedCrossRefGoogle Scholar
  23. 23.
    Knepper-Nicolai B, Savill J, Brown SB. Constitutive apoptosis in human neutrophils requires synergy between calpains and the proteasome downstream of caspases. J Biol Chem 1998; 273: 30530–30536.PubMedCrossRefGoogle Scholar
  24. 24.
    Duke RC, Cohen JJ. Morphological and biochemical assays of apoptosis. Curr Prot Immunol 1992; 1: 3.17.1–3.17.16.Google Scholar
  25. 25.
    Goll DE, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83: 731–801.PubMedGoogle Scholar
  26. 26.
    Lu T, Xu Y, Mericle MT, Mellgren RL. Participation of the conventional calpains in apoptosis. Biochim Biophys Acta 2002;1590 (1–3): 16–26.PubMedGoogle Scholar
  27. 27.
    Squier MK, Cohen JJ. Calpain, an upstream regulator of thymocyte apoptosis. J Immunol 1997; 158: 3690–3697.PubMedGoogle Scholar
  28. 28.
    Blomgren K, Zhu C, Wang X, et al. Synergistic activation of caspase-3 by m-calpain after neonatal hypoxia-ischemia: A mechanism of “pathological apoptosis”? J Biol Chem 2001; 276: 10191–10198.PubMedCrossRefGoogle Scholar
  29. 29.
    Gao G, Dou QP. N-terminal cleavage of bax by calpain generates a potent proapoptotic 18-kDa fragment that promotes bcl-2-independent cytochrome C release and apoptotic cell death. J Cell Biochem 2000; 80: 53–72.PubMedCrossRefGoogle Scholar
  30. 30.
    D'Alessio M, De Nicola M, Coppola S, et al. Oxidative, Bax dimerization promotes its translocation to mitochondria independently of apoptosis. FASEB J 2005 June21.Google Scholar
  31. 31.
    Sarin A, Clerici M, Blatt SP, Hendrix CW, Shearer GM, Henkart PA. Inhibition of activation-induced programmed cell death and restoration of defective immune responses of HIV+ donors by cysteine protease inhibitors. J Immunol 1994; 153: 862–872.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Lichtner
    • 1
  • F. Mengoni
    • 1
  • C. M. Mastroianni
    • 1
  • I. Sauzullo
    • 1
  • R. Rossi
    • 1
  • M. De Nicola
    • 2
  • V. Vullo
    • 1
  • L. Ghibelli
    • 2
    • 3
    Email author
  1. 1.Department of Infectious and Tropical Diseases“La Sapienza” UniversityRomeItaly
  2. 2.Dipartimento di BiologiaUniversitá di Roma Tor VergataRomaItaly
  3. 3.Dipartimento di BiologiaUniversitá di Roma Tor VergataRomaItaly

Personalised recommendations