Apoptosis

, Volume 11, Issue 3, pp 337–346 | Cite as

Prolonged activation of ERK1,2 induces FADD-independent caspase 8 activation and cell death

  • S. Cagnol
  • E. Van Obberghen-Schilling
  • J.-C. Chambard
Article

Abstract

Prolonged ERK/MAPK activation has been implicated in neuronal cell death in vitro and in vivo. We found that HEK293 cells, recently reported to express neuronal markers, are exquisitely sensitive to long term ERK stimulation. Activation of an inducible form of Raf-1 (Raf-1:ER) in HEK293 cells induced massive apoptosis characterized by DNA degradation, loss of plasma membrane integrity and PARP cleavage. Cell death required MEK activity and protein synthesis and occurred via the death receptor pathway independently of the mitochondrial pathway. Accordingly, prolonged ERK stimulation activated caspase 8 and strongly potentiated Fas signaling. The death receptor adaptator FADD was found to be rapidly induced upon ERK activation. However using RNA interference and ectopic expression, we demonstrated that neither FADD nor Fas were necessary for caspase 8 activation and cell death. These findings reveal that prolonged ERK/MAPK stimulation results in caspase 8 activation and cell death.

Keywords

apoptosis caspase 8 ERK (MAPK) FADD HEK293 

Abbreviations

ERK:

extracellular-regulated kinase (MAPK)

MEK:

MAP and ERK kinase (MAP2K)

FADD:

fas-associated protein with death domain

DN-FADD:

dominant negative-FADD

PARP:

poly(ADP-ribose)polymerase

RER:

Δ-Raf1:ER; 4-HT: 4-hydroxytamoxifen

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Samuels ML, Weber MJ, Bishop JM, McMahon M. Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol 1993; 13: 6241–6252.PubMedGoogle Scholar
  2. 2.
    Kerkhoff E, Rapp UR. High-intensity Raf signals convert mitotic cell cycling into cellular growth. Cancer Res 1998; 58: 1636–1640.PubMedGoogle Scholar
  3. 3.
    Sewing A, Wiseman B, Lloyd AC, Land H. High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–5597.PubMedGoogle Scholar
  4. 4.
    Samuels ML, McMahon M. Inhibition of platelet-derived growth factor- and epidermal growth factor-mediated mitogenesis and signaling in 3T3 cells expressing delta Raf-1:ER, an estradiol-regulated form of Raf-1. Mol Cell Biol 1994; 14: 7855–7866.PubMedGoogle Scholar
  5. 5.
    Woods D, Parry D, Cherwinski H, Bosch E, Lees E, McMahon M. Raf-induced proliferation or cell cycle arrest is determined by the level of Raf activity with arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5598–5611.PubMedGoogle Scholar
  6. 6.
    McMahon M. Steroid receptor fusion proteins for conditional activation of Raf-MEK- ERK signaling pathway. Methods Enzymol 2001; 332: 401–417.PubMedGoogle Scholar
  7. 7.
    Le Gall M, Chambard JC, Breittmayer JP, Grall D, Pouyssegur J, Van Obberghen-Schilling E. The p42/p44 MAP kinase pathway prevents apoptosis induced by anchorage and serum removal. Mol Biol Cell 2000; 11: 1103–1112.PubMedGoogle Scholar
  8. 8.
    Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M, et al. Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: A mechanism leading to increased malignancy in epithelial cells. Genes Dev 2000; 14: 2610–2622.CrossRefPubMedGoogle Scholar
  9. 9.
    Schulze A, Lehmann K, Jefferies HB, McMahon M, Downward J. Analysis of the transcriptional program induced by Raf in epithelial cells. Genes Dev 2001; 15: 981–994.CrossRefPubMedGoogle Scholar
  10. 10.
    Tarutani M, Cai T, Dajee M, Khavari PA. Inducible activation of Ras and Raf in adult epidermis. Cancer Res 2003; 63: 319–323.PubMedGoogle Scholar
  11. 11.
    Zhu J, Woods D, McMahon M, Bishop JM. Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 1998; 12: 2997–3007.PubMedGoogle Scholar
  12. 12.
    Fanton CP, McMahon M, Pieper RO. Dual growth arrest pathways in astrocytes and astrocytic tumors in response to Raf-1 activation. J Biol Chem 2001; 276: 18871–18877.CrossRefPubMedGoogle Scholar
  13. 13.
    Roper E, Weinberg W, Watt FM, Land H. p19ARF-independent induction of p53 and cell cycle arrest by Raf in murine keratinocytes. EMBO Rep 2001; 2: 145–150.CrossRefPubMedGoogle Scholar
  14. 14.
    Ravi RK, Weber E, McMahon M, Williams JR, Baylin S, Mal A, et al. Activated Raf-1 causes growth arrest in human small cell lung cancer cells. J Clin Invest 1998; 101: 153–159.PubMedGoogle Scholar
  15. 15.
    Green DR, Evan GI. A matter of life and death. Cancer Cell 2002; 1: 19–30.CrossRefPubMedGoogle Scholar
  16. 16.
    Graham FL, Smiley J, Russell WC, Nairn R. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 1977; 36: 59–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Shaw G, Morse S, Ararat M, Graham FL. Preferential transformation of human neuronal cells by human adenoviruses and the origin of HEK 293 cells. Faseb J 2002; 16: 869–871.PubMedGoogle Scholar
  18. 18.
    Namura S, Iihara K, Takami S, Nagata I, Kikuchi H, Matsushita K, et al. Intravenous administration of MEK inhibitor U0126 affords brain protection against forebrain ischemia and focal cerebral ischemia. Proc Natl Acad Sci USA 2001; 98: 11569–11574.CrossRefPubMedGoogle Scholar
  19. 19.
    Stanciu M, Wang Y, Kentor R, Burke N, Watkins S, Kress G, et al. Persistent activation of ERK contributes to glutamate-induced oxidative toxicity in a neuronal cell line and primary cortical neuron cultures. J Biol Chem 2000; 275: 12200–12206.CrossRefPubMedGoogle Scholar
  20. 20.
    Satoh T, Nakatsuka D, Watanabe Y, Nagata I, Kikuchi H, Namura S. Neuroprotection by MAPK/ERK kinase inhibition with U0126 against oxidative stress in a mouse neuronal cell line and rat primary cultured cortical neurons. Neurosci Lett 2000; 288: 163–166.CrossRefPubMedGoogle Scholar
  21. 21.
    McKenzie FR, Pouyssegur J. cAMP-mediated growth inhibition in fibroblasts is not mediated via mitogen-activated protein (MAP) kinase (ERK) inhibition. cAMP-dependent protein kinase induces a temporal shift in growth factor-stimulated MAP kinases. J Biol Chem 1996; 271: 13476–13483.CrossRefPubMedGoogle Scholar
  22. 22.
    Martin DA, Zheng L, Siegel RM, Huang B, Fisher GH, Wang J, et al. Defective CD95/APO-1/Fas signal complex formation in the human autoimmune lymphoproliferative syndrome, type Ia. Proc Natl Acad Sci USA 1999; 96: 4552–4557.CrossRefPubMedGoogle Scholar
  23. 23.
    Chinnaiyan AM, O’Rourke K, Tewari M, Dixit VM. FADD, a novel death domain-containing protein, interacts with the death domain of Fas and initiates apoptosis. Cell 1995; 81: 505–512.CrossRefPubMedGoogle Scholar
  24. 24.
    Chinnaiyan AM, Tepper CG, Seldin MF, O’Rourke K, Kischkel FC, Hellbardt S, et al. FADD/MORT1 is a common mediator of CD95 (Fas/APO-1) and tumor necrosis factor receptor-induced apoptosis. J Biol Chem 1996; 271: 4961–4965.CrossRefPubMedGoogle Scholar
  25. 25.
    Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39–51.CrossRefPubMedGoogle Scholar
  26. 26.
    Bosch E, Cherwinski H, Peterson D, McMahon M. Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene 1997; 15: 1021–1033.CrossRefPubMedGoogle Scholar
  27. 27.
    Lenormand P, McMahon M, Pouyssegur J. Oncogenic Raf-1 activates p70 S6 kinase via a mitogen-activated protein kinase-independent pathway. J Biol Chem 1996; 271: 15762–15768.CrossRefPubMedGoogle Scholar
  28. 28.
    Mandlekar S, Kong AN. Mechanisms of tamoxifen-induced apoptosis. Apoptosis 2001; 6: 469–477.CrossRefPubMedGoogle Scholar
  29. 29.
    Obrero M, Yu DV, Shapiro DJ. Estrogen receptor-dependent and estrogen receptor-independent pathways for tamoxifen and 4-hydroxytamoxifen-induced programmed cell death. J Biol Chem 2002; 277: 45695–45703.CrossRefPubMedGoogle Scholar
  30. 30.
    Lavoie JN, L’Allemain G, Brunet A, Muller R, Pouyssegur J. Cyclin D1 expression is regulated positively by the p42/p44MAPK and negatively by the p38/HOGMAPK pathway. J Biol Chem 1996; 271: 20608–20616.CrossRefPubMedGoogle Scholar
  31. 31.
    Siegel RM, Frederiksen JK, Zacharias DA, Chan FK, Johnson M, Lynch D, et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288: 2354–2357.CrossRefPubMedGoogle Scholar
  32. 32.
    Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, et al. FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 1997; 16: 2794–2804.CrossRefPubMedGoogle Scholar
  33. 33.
    Tsukada Y, Miyazawa K, Kitamura N. High intensity ERK signal mediates hepatocyte growth factor-induced proliferation inhibition of the human hepatocellular carcinoma cell line HepG2. J Biol Chem 2001; 276: 40968–40976.CrossRefPubMedGoogle Scholar
  34. 34.
    Dixon BS, Evanoff D, Fang WB, Dennis MJ. Bradykinin B1 receptor blocks PDGF-induced mitogenesis by prolonging ERK activation and increasing p27Kip1. Am J Physiol Cell Physiol 2002; 283: C193–C203.PubMedGoogle Scholar
  35. 35.
    Park JI, Strock CJ, Ball DW, Nelkin BD. The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol 2003; 23: 543–554.CrossRefPubMedGoogle Scholar
  36. 36.
    Park KS, Ahn Y, Kim JA, Yun MS, Seong BL, Choi KY. Extracellular zinc stimulates ERK-dependent activation of p21(Cip/WAF1) and inhibits proliferation of colorectal cancer cells. Br J Pharmacol 2002; 137: 597–607.CrossRefPubMedGoogle Scholar
  37. 37.
    Haccard O, Sarcevic B, Lewellyn A, Hartley R, Roy L, Izumi T, et al. Induction of metaphase arrest in cleaving Xenopus embryos by MAP kinase. Science 1993; 262: 1262–1265.PubMedGoogle Scholar
  38. 38.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, et al. ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 2002; 277: 12710–12717.CrossRefPubMedGoogle Scholar
  39. 39.
    Zugasti O, Rul W, Roux P, Peyssonnaux C, Eychene A, Franke TF, et al. Raf-MEK-Erk cascade in anoikis is controlled by Rac1 and Cdc42 via Akt. Mol Cell Biol 2001; 21: 6706–6717.CrossRefPubMedGoogle Scholar
  40. 40.
    Gschwend JE, Fair WR, Powell CT. Bryostatin 1 induces prolonged activation of extracellular regulated protein kinases in and apoptosis of LNCaP human prostate cancer cells overexpressing protein kinase calpha. Mol Pharmacol 2000; 57: 1224–1234.PubMedGoogle Scholar
  41. 41.
    Hoshino R, Chatani Y, Yamori T, Tsuruo T, Oka H, Yoshida O, et al. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene 1999; 18: 813–822.CrossRefPubMedGoogle Scholar
  42. 42.
    Kawakami Y, Rodriguez-Leon J, Koth CM, Buscher D, Itoh T, Raya A, et al. MKP3 mediates the cellular response to FGF8 signalling in the vertebrate limb. Nat Cell Biol 2003; 5: 513–519.CrossRefPubMedGoogle Scholar
  43. 43.
    Tan Y, Demeter MR, Ruan H, Comb MJ. BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 2000; 275: 25865–25869.CrossRefPubMedGoogle Scholar
  44. 44.
    Bonni A, Brunet A, West AE, Datta SR, Takasu MA, Greenberg ME. Cell survival promoted by the Ras-MAPK signaling pathway by transcription-dependent and -independent mechanisms. Science 1999; 286: 1358–1362.CrossRefPubMedGoogle Scholar
  45. 45.
    Breitschopf K, Haendeler J, Malchow P, Zeiher AM, Dimmeler S. Posttranslational modification of Bcl-2 facilitates its proteasome-dependent degradation: molecular characterization of the involved signaling pathway. Mol Cell Biol 2000; 20: 1886–1896.CrossRefPubMedGoogle Scholar
  46. 46.
    Erhardt P, Schremser EJ, Cooper GM. B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19: 5308–5315.PubMedGoogle Scholar
  47. 47.
    Baccarini M. An old kinase on a new path: Raf and apoptosis. Cell Death Differ 2002; 9: 783–785.CrossRefPubMedGoogle Scholar
  48. 48.
    Wilson DJ, Alessandrini A, Budd RC. MEK1 activation rescues Jurkat T cells from Fas-induced apoptosis. Cell Immunol 1999; 194: 67–77.CrossRefPubMedGoogle Scholar
  49. 49.
    Holmstrom TH, Chow SC, Elo I, Coffey ET, Orrenius S, Sistonen L, et al. Suppression of Fas/APO-1-mediated apoptosis by mitogen-activated kinase signaling. J Immunol 1998; 160: 2626–2636.PubMedGoogle Scholar
  50. 50.
    Walker LS, McLeod JD, Boulougouris G, Patel YI, Ellwood CN, Hall ND, et al. Lack of activation induced cell death in human T blasts despite CD95L up-regulation: Protection from apoptosis by MEK signalling. Immunology 1999; 98: 569–575.CrossRefPubMedGoogle Scholar
  51. 51.
    Kazama H, Yonehara S. Oncogenic K-Ras and basic fibroblast growth factor prevent Fas-mediated apoptosis in fibroblasts through activation of mitogen-activated protein kinase. J Cell Biol 2000; 148: 557–566.CrossRefPubMedGoogle Scholar
  52. 52.
    Soderstrom TS, Poukkula M, Holmstrom TH, Heiskanen KM, Eriksson JE. Mitogen-activated protein kinase/extracellular signal-regulated kinase signaling in activated T cells abrogates TRAIL-induced apoptosis upstream of the mitochondrial amplification loop and caspase-8. J Immunol 2002; 169: 2851–2860.PubMedGoogle Scholar
  53. 53.
    Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT. Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 2003; 13: 473–481.PubMedCrossRefGoogle Scholar
  54. 54.
    Gervais FG, Singaraja R, Xanthoudakis S, Gutekunst CA, Leavitt BR, Metzler M, et al. Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 2002; 4: 95–105.CrossRefPubMedGoogle Scholar
  55. 55.
    Aoudjit F, Vuori K. Matrix attachment regulates Fas-induced apoptosis in endothelial cells: A role for c-flip and implications for anoikis. J Cell Biol 2001; 152: 633–643.CrossRefPubMedGoogle Scholar
  56. 56.
    Wang W, Prince CZ, Mou Y, Pollman MJ. Notch3 signaling in vascular smooth muscle cells induces c-FLIP expression via ERK/MAPK activation. Resistance to Fas ligand-induced apoptosis. J Biol Chem 2002; 277: 21723–21729.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • S. Cagnol
    • 1
  • E. Van Obberghen-Schilling
    • 1
  • J.-C. Chambard
    • 1
  1. 1.Institute of Signaling, Developmental Biology and Cancer Research, CNRS UMR6543Université de Nice Sophia-Antipolis, Centre Antoine LacassagneNiceFrance

Personalised recommendations