, Volume 12, Issue 1, pp 247–254 | Cite as

Apelin suppresses apoptosis of human osteoblasts

  • Hui Xie
  • Ling-Qing Yuan
  • Xiang-Hang Luo
  • Jiao Huang
  • Rong-Rong Cui
  • Li-Juan Guo
  • Hou-De Zhou
  • Xian-Ping Wu
  • Er-Yuan Liao


Objectives: Apelin is a recently discovered peptide that is the endogenous ligand for the orphan G-protein-coupled receptor APJ. Adipocytes can express and secrete apelin. Osteoblast can express apelin and APJ. The aim of this study was to investigate the action of apelin on apoptosis of human osteoblasts. Results: Apelin inhibited human osteoblasts apoptosis induced by serum deprivation. Suppression of APJ with small-interfering RNA (siRNA) abolished the anti-apoptotic activity of apelin. Our study also showed an increased Bcl-2 protein expression and decreased Bax protein expression under the treatment of apelin. Apelin decreased cytochrome c release and caspase-3 activation in human osteoblasts. Apelin activated phosphatidylinositol-3 kinase (PI-3 kinase) and Akt. The apelin-induced activation of Akt was blocked by suppression of APJ with siRNA. LY294002 (a PI-3 kinase inhibitor) or 1L-6-hydroxymethyl-chiro-inositol 2-(R)-2-O-methyl-3-O-octadecylcarbonate (HIMO; an Akt inhibitor) abolished apelin induced activation of Akt, and, LY294002 or HIMO abolished the anti-apoptotic activity of apelin. Furthermore, apelin protects against apoptosis induced by the glucocorticoid dexamethasone. Conclusions: Apelin suppresses serum deprivation-induced apoptosis of human osteoblasts and the anti-apoptotic action is mediated via the APJ/PI-3 kinase/Akt signaling pathway.


Apelin APJ Osteoblast Apoptosis Phosphatidylinositol-3 kinase Akt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Stewart KJ, Deregis RJ, Turner KL et al (2002) Fitness, fatness and activity as predictors of bone mineral density in older persons. J Intern Med 252:381–88CrossRefPubMedGoogle Scholar
  2. 2.
    Lim S, Joung H, Shin CS et al (2004) Body composition changes with age have gender-specific impacts on bone mineral density. Bone 35:792–98CrossRefPubMedGoogle Scholar
  3. 3.
    Lindsay R, Cosman F, Herrington BS, Himmelstein S (1992) Bone mass and body composition in normal women. J Bone Miner Res 7:55–2PubMedGoogle Scholar
  4. 4.
    Felson DT, Zhang Y, Hannan MT, Anderson JJ (1993) Effects of weight, and body mass index on bone mineral density in men and women. J Bone Miner Res 8:567–73PubMedGoogle Scholar
  5. 5.
    Glauber HS, Vollmer WM, Nevitt MC, Ensrud KE, Orwoll ES (1995) Body weight versus body fat distribution, adiposity, and frame size as predictors of bone density. J Clin Endocrinol Metab 80:1118–123CrossRefPubMedGoogle Scholar
  6. 6.
    Khosla S, Atkinson EJ, Riggs BL, Melton LJ (1996) Relationship between body composition and bone mass in women. J Bone Miner Res 11:857–63PubMedGoogle Scholar
  7. 7.
    Xie H, Tang SY, Cui RR et al (2006) Apelin and its receptor are expressed in human osteoblasts. Regul Pept 134:118–25CrossRefPubMedGoogle Scholar
  8. 8.
    De Mota N, Reaux-Le Goazigo A, El Messari S et al (2004) Apelin, a potent diuretic neuropeptide counteracting vasopressin actions through inhibition of vasopressin neuron activity and vasopressin release. Proc Natl Acad Sci USA 101:10464–0469CrossRefPubMedGoogle Scholar
  9. 9.
    Kleinz MJ, Davenport AP (2004) Immunocytochemical localization of the endogenous vasoactive peptide apelin to human vascular and endocardial endothelial cells. Regul Pept 118:119–25CrossRefPubMedGoogle Scholar
  10. 10.
    Kawamata Y, Habata Y, Fukusumi S et al (2001) Molecular properties of apelin: tissue distribution and receptor binding. Biochim Biophys Acta 1538:162–71CrossRefPubMedGoogle Scholar
  11. 11.
    Habata Y, Fujii R, Hosoya M et al (1999) Apelin, the natural ligand of the orphan receptor APJ, is abundantly secreted in the colostrum. Biochim Biophys Acta 1452:25–5CrossRefPubMedGoogle Scholar
  12. 12.
    Tatemoto K, Hosoya M, Habata Y et al (1998) Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor. Biochem Biophys Res Commun 251:471–76CrossRefPubMedGoogle Scholar
  13. 13.
    Wei L, Hou X, Tatemoto K (2005) Regulation of apelin mRNA expression by insulin and glucocorticoids in mouse 3T3-L1 adipocytes. Regul Pept 132:27–2CrossRefPubMedGoogle Scholar
  14. 14.
    Boucher J, Masri B, Daviaud D et al (2005) Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146:1764–771CrossRefPubMedGoogle Scholar
  15. 15.
    Lee DK, Cheng R, Nguyen T (2000) Characterization of apelin, the ligand for the APJ receptor. J Neurochem 74:34–1CrossRefPubMedGoogle Scholar
  16. 16.
    O’Dowd BF, Heiber M, Chan A et al (1993) A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11. Gene 136:355–60CrossRefPubMedGoogle Scholar
  17. 17.
    Hosoya M, Kawamata Y, Fukusumi S (2000) Molecular and functional characteristics of APJ: tissue distribution of mRNA and interaction with the endogenous ligand apelin. J Biol Chem 275:21061–1067CrossRefPubMedGoogle Scholar
  18. 18.
    Medhurst AD, Jennings CA, Robbins MJ (2003) Pharmacological and immunohistochemical characterization of the APJ receptor and its endogenous ligand apelin. J Neurochem 84:1162–172CrossRefPubMedGoogle Scholar
  19. 19.
    Ishida J, Hashimoto T, Hashimoto Y et al (2004) Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin-type 1 receptor in blood pressure in vivo. J Biol Chem 279:26274–6279CrossRefPubMedGoogle Scholar
  20. 20.
    Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (2004) Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells. FASEB J 18:1909–911PubMedGoogle Scholar
  21. 21.
    Llorens-Cortes C, Beaudet A (2005) Apelin, a neuropeptide that counteracts vasopressin secretion. Med Sci 21:741–46Google Scholar
  22. 22.
    El Messari S, Iturrioz X, Fassot C, De Mota N, Roesch D, Llorens-Cortes C (2004) Functional dissociation of apelin receptor signaling and endocytosis: implications for the effects of apelin on arterial blood pressure. J Neurochem 90:1290–301CrossRefPubMedGoogle Scholar
  23. 23.
    Reaux A, De Mota N, Skultetyova I et al (2001) Physiological role of a novel neuropeptide, apelin, and its receptor in the rat brain. J Neurochem 77:1085–096CrossRefPubMedGoogle Scholar
  24. 24.
    Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y (2002) Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein. Biochem Biophys Res Commun 290:539–45CrossRefPubMedGoogle Scholar
  25. 25.
    Robey PG, Termine JD (1985) Human bone cells in vitro. Calcif. Tissue Int 37:453–60CrossRefGoogle Scholar
  26. 26.
    Liao EY, Luo XH (2001) Effects of 17beta-estradiol on the expression of matrix metalloproteinase-1,-2 and tissue inhibitor of metalloprotei- nase-1 in human osteoblast-like cell cultures. Endocrine 15:291–95CrossRefPubMedGoogle Scholar
  27. 27.
    Luo XH, Guo LJ, Yuan LQ et al (2005) Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp Cell Res 309:99–09CrossRefPubMedGoogle Scholar
  28. 28.
    Bodine PVN, Trailamith M, Komm BS (1996) Development and characterization of a conditionally transformed human osteoblastic cell line. J Bone Miner Res 11:806–19PubMedCrossRefGoogle Scholar
  29. 29.
    Plotkin LI, Weinstein RS, Parfitt AM, Roberson PK, Manolagas SC, Bellido T (1999) Prevention of osteocyte and osteoblast apoptosis by bisphosphonates and calcitonin. J Clin Invest 104:1363–374CrossRefPubMedGoogle Scholar
  30. 30.
    Ahuja SS, Zhao S, Bellido T, Plotkin LI, Jimenez F, Bonewald LF (2003) CD40 ligand blocks apoptosis induced by tumor necrosis factor alpha, glucocorticoids, and etoposide in osteoblasts and the osteocyte-like cell line murine long bone osteocyte-Y4. Endocrinology 144:1761–769CrossRefPubMedGoogle Scholar
  31. 31.
    Zhou N, Fang J, Mukhtar M, Acheampong E, Pomerantz RJ (2004) Inhibition of HIV-1 fusion with small interfering RNAs targeting the chemokine coreceptor CXCR4. Gene Therapy 11:1703–712CrossRefPubMedGoogle Scholar
  32. 32.
    De Falco M, De Luca L, Onori N et al (2002) Apelin expression in normal human tissues. In Vivo 16:333–36PubMedGoogle Scholar
  33. 33.
    Edinger AL, Hoffman TL, Sharron M et al (1998) An orphan seven-transmembrane domain receptor expressed widely in the brain functions as a coreceptor for human immunodeficiency virus type 1 and simian immunodeficiency virus. J Virol 72:7934–940PubMedGoogle Scholar
  34. 34.
    Wang G, Anini Y, Wei W et al (2004) Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion. Endocrinology 145:1342–348CrossRefPubMedGoogle Scholar
  35. 35.
    Losano GA (2005) On the cardiovascular activity of apelin. Cardiovasc Res 65:8–CrossRefPubMedGoogle Scholar
  36. 36.
    Losano G, Penna C, Cappello S, Pagliaro P (2005) Activity of apelin and APJ receptors on myocardial contractility and vasomotor tone. Ital Heart J Suppl 6:272–78PubMedGoogle Scholar
  37. 37.
    Jaszberenyi M, Bujdoso E, Telegdy G (2004) Behavioral, neuroendocrine and thermoregulatory actions of apelin-13. Neuroscience 129:811–16CrossRefPubMedGoogle Scholar
  38. 38.
    Sunter D, Hewson AK, Dickson SL (2003) Intracerebroventricular injection of apelin-13 reduces food intake in the rat. Neurosci Lett 353:1–CrossRefPubMedGoogle Scholar
  39. 39.
    Sorhede Winzell M, Magnusson C, Ahren B (2005) The APJ receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice. Regul Pept 131:12–7CrossRefPubMedGoogle Scholar
  40. 40.
    Kasai A, Shintani N, Oda M et al (2004) Apelin is a novel angiogenic factor in retinal endothelial cells. Biochem Biophys Res Commun 325:395–00CrossRefPubMedGoogle Scholar
  41. 41.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 258:302–04Google Scholar
  42. 42.
    Alvarez-Tejado M, Naranjo-Suarez S, Jimenez C, Carrera AC, Landazuri MO, del Peso L (2001) Hypoxia induces the activation of the phosphatidylinositol 3-kinase/Akt cell survival pathway in PC12 cells: protective role in apoptosis. J Biol Chem 276:22368–2374CrossRefPubMedGoogle Scholar
  43. 43.
    Barber AJ, Nakamura M, Wolpert EB et al (2001) Insulin rescues retinal neurons from apoptosis by a phosphatidylinositol 3-kinase/Akt-mediated mechanism that reduces the activation of caspase-3. J Biol Chem 276:32814–2821CrossRefPubMedGoogle Scholar
  44. 44.
    Almeida M, Han L, Bellido T, Manolagas SC, Kousteni S (2005) Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenin-dependent and -independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem 280:41342–1351CrossRefPubMedGoogle Scholar
  45. 45.
    Manolagas SC (2000) Birth and death of bone cells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis. Endocr Rev 21:115–37CrossRefPubMedGoogle Scholar
  46. 46.
    Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC (1998) Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids: potential mechanisms of their deleterious effects on bone. J Clin Invest 102:274–82CrossRefPubMedGoogle Scholar
  47. 47.
    Weinstein RS, Nicholas RW, Manolagas SC (2000) Apoptosis of osteocytes in glucocorticoid–induced osteonecrosis of the hip. J Clin Endocrinol Metab 85:2907–912CrossRefPubMedGoogle Scholar
  48. 48.
    O′Brien CA, Jia D, Plotkin LI et al (2004) Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology 145:1835–841CrossRefPubMedGoogle Scholar
  49. 49.
    Gohel A, McCarthy MB, Gronowicz G (1999) Estrogen prevents glucocorticoid-induced apoptosis in osteoblasts in vivo and in vitro. Endocrinology 140:5339–347CrossRefPubMedGoogle Scholar
  50. 50.
    Owen M (1988) Marrow stromal stem cells. J Cell Sci 10:63–6Google Scholar
  51. 51.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–4CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Hui Xie
    • 1
  • Ling-Qing Yuan
    • 1
  • Xiang-Hang Luo
    • 1
  • Jiao Huang
    • 1
  • Rong-Rong Cui
    • 1
  • Li-Juan Guo
    • 1
  • Hou-De Zhou
    • 1
  • Xian-Ping Wu
    • 1
  • Er-Yuan Liao
    • 1
  1. 1.Institute of Endocrinology & MetabolismThe Second Xiangya Hospital of Central South UniversityChangshaPR China

Personalised recommendations