, 11:2167 | Cite as

Effect of aristolochic acid on intracellular calcium concentration and its links with apoptosis in renal tubular cells

  • Yi-Hong Hsin
  • Chi-Hung Cheng
  • Jason T. C. Tzen
  • Ming-Ju Wu
  • Kuo-Hsiung Shu
  • Hong-Chen Chen


Aristolochic acid (AA) has been demonstrated to play a causal role in Chinese herbs nephropathy. However, the detailed mechanism for AA to induce apoptosis of renal tubular cells remains obscure. In this study, we show that AA evokes a rapid rise in the intracellular Ca2+ concentration of renal tubular cells through release of intracellular endoplasmic reticulum Ca2+ stores and influx of extracellular Ca2+, which in turn causes endoplasmic reticulum stress and mitochondria stress, resulting in activation of caspases and finally apoptosis. Ca2+ antagonists, including calbindin-D28k (an intracellular Ca2+ buffering protein) and BAPTA-AM (a cell-permeable Ca2+ chelator), are capable of ameliorating endoplasmic reticulum stress and mitochondria stress, and thereby enhance the resistance of the cells to AA. Moreover, we show that overexpression of the anti-apoptotic protein Bcl-2 in combination with BAPTA-AM treatment can provide renal tubular cells with almost full protection against AA-induced cytotoxicity. In conclusion, our results demonstrate an impact of AA to intracellular Ca2+ concentration and its link with AA-induced cytotoxicity.


Aristolochic acid Apoptosis Calcium ER stress GRP78 Kidney 



endoplasmic reticulum


glucose-regulated protein


aristolochic acid


3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide


1,2-bis(2-aminophenoxy)ethane-N,N,N,N′-tetraacetic acid


benzyloxycarbonyl-Phe-Val-Ala-Asp (Ome)-fluoromethyl-ketone


Madin-Darby canine kidney


cytochrome oxidase subunit IV


phosphate-buffered saline


intracellular calcium concentration


phospholipase A2


cyclosporine A


  1. 1.
    Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263CrossRefPubMedGoogle Scholar
  2. 2.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–65CrossRefPubMedGoogle Scholar
  3. 3.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–39CrossRefPubMedGoogle Scholar
  4. 4.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211’233CrossRefPubMedGoogle Scholar
  5. 5.
    Patil C, Walter P (2001) Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol 13:349–55CrossRefPubMedGoogle Scholar
  6. 6.
    Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–1CrossRefPubMedGoogle Scholar
  7. 7.
    Pinton P, Ferrari D, Magalhaes P, Schulze-Osthoff K, Di VF, Pozzan T, Rizzuto R (2000) Reduced loading of intracellular Ca2+ stores and downregulation of capacitative Ca2+ influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–62CrossRefPubMedGoogle Scholar
  8. 8.
    Pinton P, Ferrari D, Rapizzi E, Di VF, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–701CrossRefPubMedGoogle Scholar
  9. 9.
    Liu H, Bowes III RC, van de Water B, Sillence C, Nagelkerke JF, Stevens JL (1997) Endoplasmic reticulum chaperones GRP78 and calreticulin prevent oxidative stress, Ca2+ disturbances, and cell death in renal epithelial cells. J Biol Chem 272:21751–1759CrossRefPubMedGoogle Scholar
  10. 10.
    Reddy RK, Lu J, Lee AS (1999) The endoplasmic reticulum chaperone glycoprotein GRP94 with Ca2+-binding and antiapoptotic properties is a novel proteolytic target of calpain during etoposide-induced apoptosis. Biol Chem 274:28476–8483CrossRefGoogle Scholar
  11. 11.
    Lee AS (2001) The glucose-regulated proteins: stress induction and clinical applications. Trends Biochem Sci 26:504–10CrossRefPubMedGoogle Scholar
  12. 12.
    Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–95CrossRefPubMedGoogle Scholar
  13. 13.
    Ma Y, Brewer JW, Diehl JA, Hendershot LM (2002) Two distinct stress signaling pathways converge upon the CHOP promoter during the mammalian unfolded protein response. J Mol Biol 318:1351–365CrossRefPubMedGoogle Scholar
  14. 14.
    Nakagawa T, Zhu H, Morishima N, Li E, Xu J, Yankner BA, Yuan J (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–03CrossRefPubMedGoogle Scholar
  15. 15.
    Yoneda T, Imaizumi K, Oono K, Yui D, Gomi F, Katayama T, Tohyama M (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor receptor-associated factor 2-dependent mechanism in response to the ER stress. J Biol Chem 276:13935–3940PubMedGoogle Scholar
  16. 16.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–47CrossRefPubMedGoogle Scholar
  17. 17.
    Pacher P, Hajnoczky G (2001) Propagation of the apoptotic signal by mitochondrial waves. EMBO J 20:4107–121CrossRefPubMedGoogle Scholar
  18. 18.
    Korge P, Weiss JN (1999) Thapsigargin directly induces the mitochondrial permeability transition. Eur J Biochem 265:273–80CrossRefPubMedGoogle Scholar
  19. 19.
    Cosyns JP (2003) Aristolochic acid and ‘Chinese herbs nephropathy’ a review of the evidence to date. Drug Saf 26:33–8CrossRefPubMedGoogle Scholar
  20. 20.
    Vanherweghem JL, Depierreux M, Tielemans C, Abramowicz D, Dratwa M, Jadoul M, Richard C, Vandervelde D, Verbeelen D, Vanhaelen-Fastre R (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341:387–91CrossRefPubMedGoogle Scholar
  21. 21.
    Vanhaelen M, Vanhaelen-Fastre R, But P, Vanherweghem JL (1994) Identification of aristolochic acid in Chinese herbs. Lancet 343:174CrossRefPubMedGoogle Scholar
  22. 22.
    Cosyns JP, Jadoul M, Squifflet JP, Wese FX, van Ypersele de SC (1999) Urothelial lesions in Chinese-herb nephropathy. Am J Kidney Dis 33:1011–017CrossRefPubMedGoogle Scholar
  23. 23.
    Nortier JL, Martinez MC, Schmeiser HH, Arlt VM, Bieler CA, Petein M, Depierreux MF, De PL, Abramowicz D, Vereerstraeten P, Vanherweghem JL (2000) Urothelial carcinoma associated with the use of a Chinese herb (Aristolochia fangchi). N Engl J Med 342:1686–692CrossRefPubMedGoogle Scholar
  24. 24.
    Schmeiser HH, Bieler CA, Wiessler M, van Ypersele de SC, Cosyns JP (1996) Detection of DNA adducts formed by aristolochic acid in renal tissue from patients with Chinese herbs nephropathy. Cancer Res 56:2025–028PubMedGoogle Scholar
  25. 25.
    Cosyns JP, Dehoux JP, Guiot Y, Goebbels RM, Robert A, Bernard AM, van Ypersele de SC (2001) Chronic aristolochic acid toxicity in rabbits: a model of Chinese herbs nephropathy? Kidney Int 59:2164–173PubMedGoogle Scholar
  26. 26.
    Debelle FD, Nortier JL, De Prez EG, Garbar CH, Vienne AR, Salmon IJ, schodt-Lanckman MM, Vanherweghem JL (2002) Aristolochic acids induce chronic renal failure with interstitial fibrosis in salt-depleted rats. J Am Soc Nephrol 13:431–36PubMedGoogle Scholar
  27. 27.
    Gao R, Zheng F, Liu Y, Zheng D, Li X, Bo Y, Liu Y (2000) Aristolochic acid I-induced apoptosis in LLC-PK1 cells and amelioration of the apoptotic damage by calcium antagonist. Chin Med J 113:418–24PubMedGoogle Scholar
  28. 28.
    Okada H, Watanabe Y, Inoue T, Kobayashi T, Kanno Y, Shiota G, Nakamura T, Sugaya T, Fukamizu A, Suzuki H (2003) Transgene-derived hepatocyte growth factor attenuates reactive renal fibrosis in aristolochic acid nephrotoxicity. Nephrol Dial Transplant 18:2515–523CrossRefPubMedGoogle Scholar
  29. 29.
    Balachandran P, Wei F, Lin RC, Khan IA, Pasco DS (2005) Structure activity relationships of aristolochic acid analogues: toxicity in cultured renal epithelial cells. Kidney Int 67:1797–805CrossRefPubMedGoogle Scholar
  30. 30.
    Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–775CrossRefPubMedGoogle Scholar
  31. 31.
    Tafani M, Schneider TG, Pastorino JG, Farber JL (2000) Cytochrome c-dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition. Am J Pathol 156:2111–121PubMedGoogle Scholar
  32. 32.
    Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di LF, Bernardi P (2004) Arachidonic acid released by phospholipase A2 activation triggers Ca2+-dependent apoptosis through the mitochondrial pathway. J Biol Chem 279:25219–5225CrossRefPubMedGoogle Scholar
  33. 33.
    Wu MJ, Lai LW, Lien YHH (2002) Cytopretective effects of calbindin-D28k against antimycin-A induced hypoxic injury in proximal tubular cells. Life Sci 71:559–69CrossRefPubMedGoogle Scholar
  34. 34.
    Chan PC, Lai JF, Cheng CH, Tang MJ, Chiu CC, Chen HC (1999) Suppression of ultraviolet irradiation-induced apoptosis by overexpression of focal adhesion kinase in Madin-Darby canine kidney cells. J Biol Chem 274:26901–6906CrossRefPubMedGoogle Scholar
  35. 35.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–450PubMedGoogle Scholar
  36. 36.
    Chen KD, Chen LY, Huang HL, Lieu CH, Chang YN, Chang MD, Lai YK (1998) Involvement of p38 mitogen-activated protein kinase signaling pathway in the rapid induction of the 78-kDa glucose-regulated protein in 9 L rat brain tumor cells. J Biol Chem 273:749–55CrossRefPubMedGoogle Scholar
  37. 37.
    Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2+-ATPase. Proc Natl Acad Sci USA 87:2466–470CrossRefPubMedGoogle Scholar
  38. 38.
    Jeon HK, Jin HS, Lee DH, Choi WS, Moon CK, Oh YJ, Lee TH (2004) Proteome analysis associated with cadmium adaptation in U937 cells: identification of calbindin-D28 k as a secondary cadmium-responsive protein that confers resistance to cadmium-induced apoptosis. J Biol Chem 279:31575–1583CrossRefPubMedGoogle Scholar
  39. 39.
    Kowaltowski AJ, Vercesi AE, Fiskum G (2000) Bcl-2 prevents mitochondrial permeability transition and cytochrome c release via maintenance of reduced pyridine nucleotides. Cell Death Differ 7:903–10CrossRefPubMedGoogle Scholar
  40. 40.
    Murphy AN, Bredesen DE, Cortopassi G, Wang E, Fiskum G (1996) Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria. Proc Natl Acad Sci USA 93:9893–898CrossRefPubMedGoogle Scholar
  41. 41.
    Depierreux M, Van Damme B, Vanden Houte K, Vanherweghem JL (1994) Pathologic aspects of a newly described nephropathy related to the prolonged used of Chinese herbs. Am J Kidney Dis 24:172–80PubMedGoogle Scholar
  42. 42.
    Cosyns JP, Jadoul M, Squifflet JP, De Plaen JF, Ferluga D, van Ypersele de Strihou C (1994) Chinese herbs nephropathy: a clue to Balkan endemic nephropathy? Kidney Int 45:1680–688CrossRefPubMedGoogle Scholar
  43. 43.
    Rosenthal MD, Vishwanath BS, Franson RC (1989) Effects of aristolochic acid on phospholipase A2 activity and arachidonate metabolism of human neutrophils. Biochim Biophys Acta 1001:1–PubMedGoogle Scholar
  44. 44.
    Fayard JM, Tessier C, Cohen H, Lagarde M, Pageaux JF, Laugier C (1994) Phospholipase A2 inhibitors regulate the proliferation of normal uterine cells. Eur J Pharmacol 251:281–89CrossRefPubMedGoogle Scholar
  45. 45.
    Kudo I, Murakami M, Hara S, Inoue K (1993) Mammalian non-pancreatic phospholipases A2. Biochim Biophys Acta 1170:217–31PubMedGoogle Scholar
  46. 46.
    Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 276:12035–2040CrossRefPubMedGoogle Scholar
  47. 47.
    Zhang Y, Lemasters J, Herman B (1999) Secretory group IIA phospholipase A2 generates anti-apoptotic survival signals in kidney fibroblasts. J Biol Chem 274:27726–7733CrossRefPubMedGoogle Scholar
  48. 48.
    Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ, Swisher SG (2002) Bax and Bak promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. J Biol Chem 277:9219–225CrossRefPubMedGoogle Scholar
  49. 49.
    Healy E, Dempsey M, Lally C, Ryan MP (1998) Apoptosis and necrosis: Mechanisms of cell death induced by cyclosporine A in a renal proximal tubular cell line. Kidney Int 54:1955–966CrossRefPubMedGoogle Scholar
  50. 50.
    Cheng CH, Hsieh CL, Shu KH, Chen YL, Chen HC (2002) Effect of calcium channel antagonist diltiazem and calcium ionophore A23187 on cyclosporin A-inudced apoptosis of renal tubular cells. FEBS Lett 516:191–96CrossRefPubMedGoogle Scholar
  51. 51.
    Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–14CrossRefPubMedGoogle Scholar
  52. 52.
    Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 276:22461–2467CrossRefPubMedGoogle Scholar
  53. 53.
    Timmerman LA, Clipstone NA, Ho SN, Northrop JP, Crabtree GR (1996) Rapid shuttling of NF-AT in discrimination of Ca2+ signals and immunosuppression. Nature 383:837–40CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Yi-Hong Hsin
    • 1
  • Chi-Hung Cheng
    • 2
  • Jason T. C. Tzen
    • 3
  • Ming-Ju Wu
    • 2
  • Kuo-Hsiung Shu
    • 2
  • Hong-Chen Chen
    • 1
  1. 1.Department of Life Science and the Graduate Institute of Biomedical SciencesNational Chung Hsing UniversityTaichungTaiwan
  2. 2.Section of NephrologyTaichung Veterans General HospitalTaichungTaiwan
  3. 3.Graduate Institute of BiotechnologyNational Chung Hsing UniversityTaichungTaiwan

Personalised recommendations