Advertisement

Apoptosis

, Volume 11, Issue 11, pp 1987–1997 | Cite as

Caspase-3 mediated feedback activation of apical caspases in doxorubicin and TNF-α induced apoptosis

  • Shihe Yang
  • Ann D. Thor
  • Susan Edgerton
  • XiaoHe YangEmail author
Article

Abstract

Aberrant apoptosis has been associated with the development and therapeutic resistance of cancer. Recent studies suggest that caspase deficiency/downregulation is frequently detected in different cancers. We have previously shown that caspase-3 reconstitution significantly sensitized MCF-7 cells to doxorubicin and etoposide. In contrast to the well established role of caspase-3 as an effector caspase, the focus of this study is to delineate caspase-3 induced feedback activation of the apical caspases-2, -8, -9 and -10A in doxorubicin and TNF-α induced apoptosis. Using cell-free systems we show that caspases-9 and 2 are the most sensitive, caspase-8 is less sensitive and caspase-10A is the least sensitive to caspase-3 mediated-cleavage. When apoptosis is induced by doxorubicin or TNF-α in an intact cell model, cleavage of caspases-8 and -9, but not caspase-2, was markedly enhanced by caspase-3. Caspase-3 mediated-feedback and activation of caspase-8 and -9 in MCF-7/C3 cells is further supported by an increase in the cleavage of caspase-8 and 9 substrates and cytochrome c release. These data indicate that, in addition to its function as an effector caspase, caspase-3 plays an important role in maximizing the activation of apical caspases and crosstalk between the two major apoptotic pathways. The significant impact of caspase-3 on both effector and apical caspases suggests that modulation of caspase-3 activity would be a useful approach to overcome drug resistance in clinical oncology.

Keywords

Caspase-3 Apoptosis Apical caspase Doxorubicin TNF-α 

Abbreviations

DISC

death-inducing signaling complex

CHX

cycloheximide

TnT

in vitro transcription and translation

DEVD-CHO

Ac-Asp-Glu-Val-Asp-CHO

YVAD-CHO

Ac-Tyr-Val-Ala-Asp-CHO

Z-IETD-AMC

Z-Ile-Glu-Thr-Asp-AMC

Ac-LEHD-AMC

Ac-Leu-Glu-His-Asp-AMC

PARP

poly(ADP-ribose)polymerases

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171PubMedCrossRefGoogle Scholar
  2. 2.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  3. 3.
    Salvesen GS, Dixit VM (1997) Caspases: intracellular signaling by proteolysis. Cell 91:443–446PubMedCrossRefGoogle Scholar
  4. 4.
    Denault JB, Salvesen GS (2002) Caspases: keys in the ignition of cell death. Chem Rev 102:4489–4500PubMedCrossRefGoogle Scholar
  5. 5.
    Froelich CJ, Dixit VM, Yang X (1998) Lymphocyte granule-mediated apoptosis: matters of viral mimicry and deadly proteases. Immunol Today 19:30–36PubMedCrossRefGoogle Scholar
  6. 6.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776PubMedCrossRefGoogle Scholar
  7. 7.
    Kischkel FC, Hellbardt S, Behrmann I, Germer M, Pawlita M, Krammer PH, Peter ME (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. Embo J 14:5579–5588PubMedGoogle Scholar
  8. 8.
    Salvesen GS, Dixit VM (1999) Caspase activation: the induced-proximity model. Proc Natl Acad Sci USA 96:10964–10967PubMedCrossRefGoogle Scholar
  9. 9.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  10. 10.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedCrossRefGoogle Scholar
  11. 11.
    Zou H, Li Y, Liu X, Wang X (1999) An APAF-1. cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556PubMedCrossRefGoogle Scholar
  12. 12.
    Shi Y (2002) Apoptosome: the cellular engine for the activation of caspase-9. Structure (Camb) 10:285–288CrossRefGoogle Scholar
  13. 13.
    Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731PubMedCrossRefGoogle Scholar
  14. 14.
    Fischer U, Janicke RU, Schulze-Osthoff K (2003) Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ 10:76–100PubMedCrossRefGoogle Scholar
  15. 15.
    Porter AG, Janicke RU (1999) Emerging roles of caspase-3 in apoptosis. Cell Death Differ 6: 99–104PubMedCrossRefGoogle Scholar
  16. 16.
    Kuida K, Zheng TS, Na S, Kuan C, Yang D, Karasuyama H, Rakic P, Flavell RA (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372PubMedCrossRefGoogle Scholar
  17. 17.
    Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360PubMedCrossRefGoogle Scholar
  18. 18.
    Yang XH, Sladek TL, Liu X, Butler BR, Froelich CJ, Thor AD (2001) Reconstitution of caspase 3 sensitizes MCF-7 breast cancer cells to doxorubicin- and etoposide-induced apoptosis. Cancer Res 61:348–354PubMedGoogle Scholar
  19. 19.
    Yang XH, Edgerton S, Thor AD (2005) Reconstitution of caspase-3 sensitizes MCF-7 breast cancer cells to radiation therapy. Int J Oncol 26:1675–1680PubMedGoogle Scholar
  20. 20.
    Yang X, Stennicke HR, Wang B, Green DR, Janicke RU, Srinivasan A, Seth P, Salvesen GS, Froelich CJ (1998) Granzyme B mimics apical caspases. Description of a unified pathway for trans-activation of executioner caspase-3 and -7. J Biol Chem 273:34278–34283PubMedCrossRefGoogle Scholar
  21. 21.
    Devarajan E, Sahin AA, Chen JS, Krishnamurthy RR, Aggarwal N, Brun AM, Sapino A, Zhang F, Sharma D, Yang XH, Tora AD, Mehta K (2002) Down-regulation of caspase 3 in breast cancer: a possible mechanism for chemoresistance. Oncogene 21:8843–8851PubMedCrossRefGoogle Scholar
  22. 22.
    Fujita E, Egashira J, Urase K, Kuida K, Momoi T (2001) Caspase-9 processing by caspase-3 via a feedback amplification loop in vivo. Cell Death Differ 8:335–344PubMedCrossRefGoogle Scholar
  23. 23.
    Blanc C, Deveraux QL, Krajewski S, Janicke RU, Porter AG, Reed JC, Jaggi R, Marti A (2000) Caspase-3 is essential for procaspase-9 processing and cisplatin-induced apoptosis of MCF-7 breast cancer cells. Cancer Res 60:4386–4390PubMedGoogle Scholar
  24. 24.
    Stennicke HR, Jurgensmeier JM, Shin H, Deveraux Q, Wolf BB, Yang X, Zhou Q, Ellerby HM, Ellerby LM, Bredesen D, Green DR, Reed JC, Froelich CJ, Salvesen GS (1998) Pro-caspase-3 is a major physiologic target of caspase-8. J Biol Chem 273:27084–27090PubMedCrossRefGoogle Scholar
  25. 25.
    Talanian RV, Yang X, Turbov J, Seth P, Ghayur T, Casiano CA, Orth K, Froelich CJ (1997) Granule-mediated killing: pathways for granzyme B-initiated apoptosis. J Exp Med 186:1323–1331PubMedCrossRefGoogle Scholar
  26. 26.
    Yang XH, Sladek TL (1995) Overexpression of the E2F-1 transcription factor gene mediates cell transformation. Gene Expr 4:195–204PubMedGoogle Scholar
  27. 27.
    Bossy-Wetzel E, Green DR (2000) Assays for cytochrome c release from mitochondria during apoptosis. Methods Enzymol 322:235–242PubMedCrossRefGoogle Scholar
  28. 28.
    Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957PubMedCrossRefGoogle Scholar
  29. 29.
    Johnson CR, Jarvis WD (2004) Caspase-9 regulation: an update. Apoptosis 9:423–427PubMedCrossRefGoogle Scholar
  30. 30.
    Li H, Bergeron L, Cryns V, Pasternack MS, Zhu H, Shi L, Greenberg A, Yuan J (1997) Activation of caspase-2 in apoptosis. J Biol Chem 272:21010–21017PubMedCrossRefGoogle Scholar
  31. 31.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490PubMedCrossRefGoogle Scholar
  32. 32.
    Slee EA, Keogh SA, Martin SJ (2000) Cleavage of BID during cytotoxic drug and UV radiation-induced apoptosis occurs downstream of the point of Bcl-2 action and is catalysed by caspase-3: a potential feedback loop for amplification of apoptosis-associated mitochondrial cytochrome c release. Cell Death Differ 7:556–565PubMedCrossRefGoogle Scholar
  33. 33.
    Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC (1998) IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. Embo J 17:2215–2223PubMedCrossRefGoogle Scholar
  34. 34.
    Pan G, O'Rourke K, Dixit VM (1998) Caspase-9, Bcl-XL, and Apaf-1 form a ternary complex. J Biol Chem 273:5841–5845PubMedGoogle Scholar
  35. 35.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321PubMedCrossRefGoogle Scholar
  36. 36.
    Allan LA, Morrice N, Brady S, Magee G, Pathak S, Clarke PR (2003) Inhibition of caspase-9 through phosphorylation at Thr 125 by ERK MAPK. Nat Cell Biol 5:647–654PubMedCrossRefGoogle Scholar
  37. 37.
    Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184PubMedCrossRefGoogle Scholar
  38. 38.
    Shi Y (2004) Caspase activation: revisiting the induced proximity model. Cell 117:855–858PubMedCrossRefGoogle Scholar
  39. 39.
    Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer PH, Peter ME (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 16:2794–2804PubMedCrossRefGoogle Scholar
  40. 40.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501PubMedCrossRefGoogle Scholar
  41. 41.
    Cowling V, Downward J (2002) Caspase-6 is the direct activator of caspase-8 in the cytochrome c-induced apoptosis pathway: absolute requirement for removal of caspase-6 prodomain. Cell Death Differ 9:1046–1056PubMedCrossRefGoogle Scholar
  42. 42.
    Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CA, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292PubMedCrossRefGoogle Scholar
  43. 43.
    Paroni G, Henderson C, Schneider C, Brancolini C (2001) Caspase-2-induced apoptosis is dependent on caspase-9, but its processing during UV- or tumor necrosis factor-dependent cell death requires caspase-3. J Biol Chem 276:21907–21915PubMedCrossRefGoogle Scholar
  44. 44.
    Cheng EH, Kirsch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspases. Science 278:1966–1968PubMedCrossRefGoogle Scholar
  45. 45.
    Lakhani SA, Masud A, Kuida K, Porter, Jr GA, Booth CJ, Mehal WZ, Inayat I, Flavell RA (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2006

Authors and Affiliations

  • Shihe Yang
    • 1
  • Ann D. Thor
    • 2
  • Susan Edgerton
    • 2
  • XiaoHe Yang
    • 1
    Email author
  1. 1.Department of PathologyUniversity of Oklahoma Health Sciences CenterOklahoma CityUSA
  2. 2.Department of PathologyUniversity of Colorado at Denver & Health Sciences CenterDenverUSA

Personalised recommendations