, Volume 12, Issue 7, pp 1183–1193 | Cite as

Rapid cold-hardening protects Drosophila melanogaster from cold-induced apoptosis

  • Shu-Xia Yi
  • Clifford W. Moore
  • Richard E. LeeJr.Email author


The rapid cold-hardening (RCH) response increases the cold tolerance of insects by protecting against non-freezing, cold-shock injury. Apoptosis, or programmed cell death, plays important roles in development and the elimination of sub-lethally damaged cells. Our objectives were to determine whether apoptosis plays a role in cold-shock injury and, if so, whether the RCH response protects against cold-induced apoptosis in Drosophila melanogaster. The present study confirmed that RCH increased the cold tolerance of the adults at the organismal level. No flies in the cold-shocked group survived direct exposure to ‒7°C for 2 h, whereas significantly more flies in the RCH group survived exposure to ‒7°C for 2 h after a 2-h exposure to 5°C. We used a TUNEL assay to detect and quantify apoptotic cell death in five groups of flies including control, cold-shocked, RCH, heat-shocked (37.5°C, 30 min), and frozen (‒20°C, 24 h) and found that apoptosis was induced by cold shock, heat shock, and freezing. The RCH treatment significantly improved cell viability by 38% compared to the cold-shocked group. Cold shock-induced DNA fragmentation shown by electrophoresis provided further evidence for apoptosis. SDS-PAGE analysis revealed an RCH-specific protein band with molecular mass of ∼150 kDa. Western-blotting revealed three proteins that play key roles in the apoptotic pathway: caspase-9-like (apoptotic initiator), caspase-3-like (apoptotic executioner) and Bcl-2 (anti-apoptotic protein). Consequently, the results of this study support the hypothesis that the RCH response protects against cold-shock-induced apoptosis.


Drosophila melanogaster Apoptosis TUNEL assay Rapid cold-hardening Cold shock 



apoptosis protease-activating factor-1


B cell leukemia/lymphoma-2


cysteinyl-directed aspartate-specific proteases




heat-shock factor 1


heat shock proteins


rat brain proteins


rapid cold-hardening


sodium dodecyl sulphate-polyacrylamide gel electrophoresis


terminal deoxynucleotidyl transferase (TdT)-mediated uridine 5′-triphosphate- biotin (dUTP) nick end labeling



This research was supported by NSF grant #IOB-0416720. We thank Katia Del Rio-Tsonis, Natalia Vergara and Juanita Constible for a critical reading of the manuscript.


  1. 1.
    Lee RE (1991) Principles of insect low temperature tolerance. In: Lee RE, Denlinger DL (eds) Insects at low temperature. Chapman and Hall, New York, pp 17–46Google Scholar
  2. 2.
    Denlinger DL, Lee RE (1998) Physiology of cold sensitivity. In: Hallman GJ, Denlinger DL (eds) Temperature sensitivity in insects and application in integrated pest management. Westview Press, Boulder, pp 55–95Google Scholar
  3. 3.
    Lee RE, Chen C-P, Denlinger DL (1987) A rapid cold-hardening process in insects. Science 238:1415–1417CrossRefGoogle Scholar
  4. 4.
    Czajka M, Lee RE (1990) A rapid cold-hardening protection against cold shock injury in Drosophila melanogaster. J Exp Biol 148:245–254PubMedGoogle Scholar
  5. 5.
    Shreve SM, Kelty JD, Lee RE (2004) Preservation of reproductive behaviors during modest cooling: rapid cold-hardening fine-tunes organismal response. J Exp Biol 207:1797–1802PubMedCrossRefGoogle Scholar
  6. 6.
    Drobnis EZ, Crow LM, Berger T, Anchrordoguy TJ, Overstreet JW, Crowe JH (1993) Cold shock damage is due to lipid phase transitions in cell membranes: a demonstration using sperm as a model. J Exp Zool 265:432–437PubMedCrossRefGoogle Scholar
  7. 7.
    Yi S-X, Lee RE (2003) Detecting freeze injury and seasonal cold-hardening of cells and tissues in the gall fly larvae, Eurosta solidaginis (Diptera: Tephritidae) using fluorescent vital dyes. J Insect Physiol 49:999–1004PubMedCrossRefGoogle Scholar
  8. 8.
    Yi S-X, Lee RE (2004) In vivo and in vitro rapid cold-hardening protects cells from cold-shock injury in the flesh fly. J Comp Physiol B 174:611–615PubMedCrossRefGoogle Scholar
  9. 9.
    Fuller BJ (2003) Gene expression in response to low temperatures in mammalian cells: a review of current ideas. CryoLetters 24:95–102PubMedGoogle Scholar
  10. 10.
    Pérez-Garijo A, Martin FA, Morata G (2004) Caspase inhibition during apoptosis causes abnormal signaling and development aberrations in Drosophila. Development 131:5591–5598PubMedCrossRefGoogle Scholar
  11. 11.
    White K, Tahaoglu E, Steller H (1996) Cell killing by the Drosophila gene reaper. Science 271:805–807PubMedCrossRefGoogle Scholar
  12. 12.
    McCall K, Steller H (1998) Requirement for DCP-1 caspase during Drosophila oogenesis. Science 279:230–234PubMedCrossRefGoogle Scholar
  13. 13.
    Bangs P, White K (2000) Regulation and execution of apoptosis during Drosophila development. Dev Dyn 218:68–79PubMedCrossRefGoogle Scholar
  14. 14.
    Bergman A, Agapite J, Steller H (1998) Mechanisms and control of programmed cell death in invertebrates. Oncogene 17:3215–3223CrossRefGoogle Scholar
  15. 15.
    Rauen U, Polzar B, Stephan H, Mannherz HG, de Groot H (1999) Cold-induced apoptosis in cultured hepatocytes and liver endothelial cells: mediation by reactive oxygen species. FASEB J 13:155–168PubMedGoogle Scholar
  16. 16.
    Kerkweg U, Li T, de Groot H, Rauen U (2002) Cold-induced apoptosis of rat liver cells in University of Wisconsin solution: the central role of chelatable iron. Hepatology 35:560–567PubMedCrossRefGoogle Scholar
  17. 17.
    Doeppner TR, Grune T, de Groot H, Rauen U (2003) Cold-induced apoptosis of rat liver endothelial cells: involvement of the proteasome. Transplantation 75:1946–1953PubMedCrossRefGoogle Scholar
  18. 18.
    Soloff BL, Nagle WA, Moss AJ, Henle KJ, Crawford JT (1987) Apoptosis induced by cold shock in vitro is dependent on cell growth phase. Biochem Biophys Res Commun 145:876–883PubMedCrossRefGoogle Scholar
  19. 19.
    Kelty JD, Lee RE (1999) Induction of rapid cold-hardening by cooling at ecologically relevant rates in Drosophila melanogaster. J Insect Physiol 45:719–726PubMedCrossRefGoogle Scholar
  20. 20.
    Gavrieli Y, Sherman Y, Ben-Sasson SA (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119:493–501PubMedCrossRefGoogle Scholar
  21. 21.
    Birren B, Green ED, Klapholz S, Myers RM, Roskams J (eds) (1997) DNA isolation from D. melanogaster. In: Genome analysis: a laboratory manual vol 1: Analyzing DNA. CSHL Press, New YorkGoogle Scholar
  22. 22.
    Murakami K, Kondo T, Yang G, Chen SF, Morita-Fujimura Y, Chan PH (1999) Cold injury in mice: a model to study mechanisms of brain edema and neuronal apoptosis. Progress in Neurobiol 57:289–299CrossRefGoogle Scholar
  23. 23.
    Wilhelm JE, Mansfield J, Hom-Booher N, Wang S, Turck CW, Hazelrigg T, Vale RD (2000) Isolation of a ribonucleoprotein complex involved in mRNA localization is Drosophila oocytes. J Cell Biol 148:427–439PubMedCrossRefGoogle Scholar
  24. 24.
    Manning F, Zuzel K (2003) Comparison of types of cell death: apoptosis and necrosis. J Biol Education 37:141–145Google Scholar
  25. 25.
    Burton V, Mitchell HK, Young P, Petersen NS (1988) Heat shock protection against cold stress of Drosophila melanogaster. Mol Cell Biol 8:3550–3552PubMedGoogle Scholar
  26. 26.
    Dahlgaard J, Loeschcke V, Michalak P, Justesen J (1998) Induced thermotolerance and associated expression of the heat-shock protein Hsp70 in adult Drosophila melanogaster. Functional Ecol 12:786–793CrossRefGoogle Scholar
  27. 27.
    Sejerkilde M, Sørensen JG, Loeschcke V (2003) Effects of cold- and heat hardening on thermal resistance in Drosophila melanogaster. J Insect Physiol 49:719–726PubMedCrossRefGoogle Scholar
  28. 28.
    Morrow G, Heikkila JJ, Tanguay RM (2006) Differences in the chaperone-like activities of the four main small heat shock proteins of Drosophila melanogaster. Cell Stress Chaperones 11:51–60PubMedCrossRefGoogle Scholar
  29. 29.
    Beere HM (2005) Death versus survival: functional interaction between the apoptotic and stress-inducible heat shock protein pathways. J Clinical Investigation 115:2633–2639CrossRefGoogle Scholar
  30. 30.
    Murakami K, Kondo T, Sato S, Li Y, Chan PH (1997) Occurrence of apoptosis following cold injury-induced brain edema in mice. Neuroscience 81:231–237PubMedCrossRefGoogle Scholar
  31. 31.
    Xu R-X, Nakamura T, Nagao S, Miyamoto O, Jin, L, Toyoshima T, Iitano T (1998) Specific inhibition of apoptosis after cold-induced brain injury by moderate postinjury hypothermia. Neurosurgery 43:107–115PubMedCrossRefGoogle Scholar
  32. 32.
    Baust JM, Van Buskirk R, Baust JG (2002) Gene activation of the apoptotic caspase cascade following cryogenic storage. Cell Preserv Tech 1:63–80CrossRefGoogle Scholar
  33. 33.
    Vairetti M, Ferrigno A, Bertone R, Richelmi P, Bertè F, Freitas I (2005) Apoptosis vs. necrosis: glutathione-mediated cell death during rewarming of rat hepatocytes. Biochim Biophys Acta 1740:367–374PubMedGoogle Scholar
  34. 34.
    Nagle WA, Soloff BL, Moss AJ, Henle KJ (1990) Cultured Chinese hamster cells undergo apoptosis after exposure to cold but nonfreezing temperature. Cryobiol 27:439–451CrossRefGoogle Scholar
  35. 35.
    Garcia SL, Mello MLS, Garcia NL, Rodrigues VLCC (2000) Changes in nuclear phenotypes following cold shock in Panstrongylus megistus (Burmeister). Mem Inst Oswaldo Cruz Rio de Janeiro 95:893–898Google Scholar
  36. 36.
    Campos SGP, Podrigues VLCC, Mello MLS (2002) Changes in nuclear phenotype frequencies following sequential cold shocks in Triatoma infestans (Hemiptera, Reduviidae). Mem Inst Oswaldo Cruz Rio de Janeiro 97:857–864Google Scholar
  37. 37.
    Lee RE, Damodaran K, Yi S-X, Lorigan GA (2006) Rapid cold-hardening increases membrane fluidity and cold tolerance of insect cells. Cryobiol 52:459–463CrossRefGoogle Scholar
  38. 38.
    Lee RE, Elnitsky MA, Rinehart JP, Hayward SA, Sandro LH, Denlinger DL (2006) Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica. J Exp Biol 209:399–406PubMedCrossRefGoogle Scholar
  39. 39.
    Bettaieb A, Averill-Bates DA (2005) Thermotolerance induced at a mild temperature of 40°C protects cells against heat shock-induced apoptosis. J Cellular Physiol 205:47–57CrossRefGoogle Scholar
  40. 40.
    Webster KA (2003) Serine phosphorylation and suppression of apoptosis by the small heat shock protein alphaB-crystallin. Circ Res 92:130–132PubMedCrossRefGoogle Scholar
  41. 41.
    Kamradt MC, Chen F, Sam S, Cryns VL (2002) The small heat shock protein alpha B-crystallin negatively regulates apoptosis during myogenic differentiation by inhibiting caspase-3 activation. J Biol Chem 277:38731–38736PubMedCrossRefGoogle Scholar
  42. 42.
    Suzuki K, Smolenski RT, Jayakumar J, Murtuza B, Brand NJ, Yacoub MH (2000) Heat shock treatment enhances graft cell survival in skeletal myoblast transplantation to the heart. Circulation 102:III216–III221PubMedGoogle Scholar
  43. 43.
    Schlesinger MJ, Santoro MG, Garaci E (1990) Stress proteins: induction and function. Springer-Verlag, New YorkGoogle Scholar
  44. 44.
    Siu PM, Bryner RW, Martyn JK, Always SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18:1150–1152PubMedGoogle Scholar
  45. 45.
    Kelty JD, Lee RE (2001) Rapid cold-hardening of Drosophila melanogaster (Diptera: Drosophilidae) during ecologically-based thermoperiodic cycles. J Exp Biol 204:1659–1666PubMedGoogle Scholar
  46. 46.
    Overgaard J, Sorensen JG, Petersen SO, Loeschcke V, Holmstrup M (2005) Changes in membrane liquid composition following rapid cold hardening in Drosophila melanogaster. J Insect Physiol 51:1173–1182PubMedCrossRefGoogle Scholar
  47. 47.
    Yiangou M, Tsapogas P, Nikolaidis N, Scouras ZG (1997) Heat shock gene expression during recovery after transient cold shock in Drosophila auraria (Diptera: Drosophilidae). Cytobios 92:91–98PubMedGoogle Scholar
  48. 48.
    Liu A, Bian H, Huang E, Lee YK (1994) Transient cold shock induces the heat shock response upon recovery at 37°C in human cells. J Biol Chem 269:14768–14775PubMedGoogle Scholar
  49. 49.
    Petersen NS, Young P, Burton V (1990) Heat shock mRNA accumulation during recovery from cold shock in Drosophila melanogaster. Insect Bichem 20:679–684CrossRefGoogle Scholar
  50. 50.
    Qin W, Neal SJ, Robertson RM, Westwood JT, Walker VK (2005) Cold hardening and transcriptional change in Drosophila melanogaster. Insect Mol Biol 14:607–613PubMedCrossRefGoogle Scholar
  51. 51.
    Joplin KH, Yocum GD, Denlinger DL (1990) Cold shock elicits expression of heat shock proteins in the flesh fly, Sarcophaga crassipalpis. J Insect Physiol 36:825–834CrossRefGoogle Scholar
  52. 52.
    Goto SG, Yoshida KM, Kimura MT (1998) Accumulation of Hsp70 mRNA under environmental stresses in diapausing and nondiapausing adults of Drosophila triauraria. J Insect Physiol 44:1009–1015PubMedCrossRefGoogle Scholar
  53. 53.
    Alnemri ES, Livingston DJ, Nicholson DW, Salvesen G, Thornberry NA, Wong WW, Yuan J (1996) Human ICE/CED-3 protease nomenclature. Cell 87:171–171PubMedCrossRefGoogle Scholar
  54. 54.
    Golstein P (1997) Controlling cell death. Science 275:1081–1082PubMedCrossRefGoogle Scholar
  55. 55.
    Cryns V, Yuan J (1998) Proteases to die for. Genes and Develop 12:1551–1570Google Scholar
  56. 56.
    Verma YK, Gangenahalli GU, Singh VK, Gupta P, Chandra R, Sharma RK, Raj HG (2006) Cell death regulation by B-cell lymphoma protein. Apoptosis 11:459–471PubMedCrossRefGoogle Scholar
  57. 57.
    Tu S, McStay GP, Boucher L-M, Mak T, Beere HM, Green DR (2006) In situ trapping of activated initiator caspases reveals a role for caspase-2 in heat shock-induced apoptosis. Nature Cell Biol 8:72–77PubMedCrossRefGoogle Scholar
  58. 58.
    Cheng EJY, Krisch DG, Clem RJ, Ravi R, Kastan MB, Bedi A, Ueno K, Hardwick JM (1997) Conversion of Bcl-2 to a Bax-like death effector by caspasees. Science 278:1966–1968PubMedCrossRefGoogle Scholar
  59. 59.
    Clem R, Cheng E, Karp C, Krisch D, Ueno K, Takahashi A, Kastan M, Griffin D, Earnshaw W, Veliuona M, Hardwick J (1998) Modulation of cell death by Bcl-xL through caspase interaction. Proc Natl Acad Sci USA 95:554–559PubMedCrossRefGoogle Scholar
  60. 60.
    Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nature Med 3:917–921PubMedCrossRefGoogle Scholar
  61. 61.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157PubMedCrossRefGoogle Scholar
  62. 62.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng T-I, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedCrossRefGoogle Scholar
  63. 63.
    Morita-Fujimura Y, Fujimura M, Kawase M, Chen SF, Chan PH (1999) Release of mitochondrial cytochrome c and DNA fragmentation after cold injury-induced brain trauma in mice: possible role in neuronal apoptosis. Neuroscience Lett 267:201–205CrossRefGoogle Scholar
  64. 64.
    Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang X (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  65. 65.
    Pan G, O’Rourke K, Dixit VM (1998) Caspase-9, Bcl-xL, and Apaf-1 form a ternary complex. J Biol Chem 273:5841–5845PubMedCrossRefGoogle Scholar
  66. 66.
    Budihardjo I, Oliver H, Lutter M, Luo X, Wang X (1999) Biochemical pathway of caspase activation during apoptosis. Annu Rev Cell Dev Biol 15:269–290PubMedCrossRefGoogle Scholar
  67. 67.
    de Graauw M, Tijdens I, Cramer R, Corless S, Timms JF, van de Water B (2005) Heat shock protein 27 is the major differentially phosphorylated protein involved in renal epithelial cellular stress response and controls focal adhesion organization and apoptosis. J Biol Chem 280:29885–29898PubMedCrossRefGoogle Scholar
  68. 68.
    Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod J-J, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou J-C (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Shu-Xia Yi
    • 1
  • Clifford W. Moore
    • 1
  • Richard E. LeeJr.
    • 1
    Email author
  1. 1.Department of ZoologyMiami UniversityOxfordUSA

Personalised recommendations