, Volume 12, Issue 4, pp 685–694 | Cite as

Sclareol induces apoptosis in human HCT116 colon cancer cells in vitro and suppression of HCT116 tumor growth in immunodeficient mice

  • Konstantinos DimasEmail author
  • Sophia Hatziantoniou
  • Sophia Tseleni
  • Humaira Khan
  • Aristidis Georgopoulos
  • Konstantinos Alevizopoulos
  • James H. Wyche
  • Panayotis Pantazis
  • Costas Demetzos


Labd-14-ene-8, 13-diol (sclareol) is a labdane-type diterpene, which has demonstrated significant cytotoxic activity against human leukemic cell lines, but its effect on solid tumor-derived cells is uknown. Here, we demonstrate that addition of sclareol to cultures of human colon cancer HCT116 cells results in inhibition of DNA synthesis, arrest of cells at the G1 phase of the cell cycle, activation of caspases-8, -9, PARP degradation, and DNA fragmentation, events characteristic of induction of apoptosis. Intraperitoneal (ip) administration of sclareol alone, at the maximum tolerated dose, was unable to induce suppression of growth of HCT116 tumors established as xenografts in immunodeficient SCID mice. In contrast, ip administration of liposome-encapsulated sclareol, following a specific schedule, induced suppression of tumor growth by arresting tumor cell proliferation as assessed by detecting the presence of the cell proliferation-associated nuclear protein, Ki67, in thin tumor sections. These findings suggest that sclareol incorporated into liposomes may possess chemotherapeutic potential for the treatment of colorectal and other types of human cancer.


Plant product Labdane diterpene Sclareol Apoptosis Tumor suppression 



Authors would like to thank Dr. Stamatis Pagakis and Dr. Eleni Rigana of the Biological Imaging Unit of the Foundation for Biomedical Research of Academy of Athens, for their contribution and help in microsopy studies.


  1. 1.
    Connolly JD, Hill RA (1991) Dictionary of terpenoids. Chapman & Hall, LondonGoogle Scholar
  2. 2.
    Demetzos K, Harvala C, Philianos SM, Skaltsounis AL (1990) A new labdane type diterpene and other compounds from the leaves of Cistus creticus (L) Heywood. J Nat Prod 53:1315–1368Google Scholar
  3. 3.
    Demetzos C, Stahl B, Anastassaki T, Gazouli M, Tzouvelekis, L, Rallis M (1999) Chemical analysis and antimicrobial activity of the resin ladano, of its essential oil and of the isolated compounds. Planta Med 65:76–78PubMedCrossRefGoogle Scholar
  4. 4.
    Demetzos C, Dimas K (2001) Labdane-type diterpenes: Chemistry and biological activity. In: Atta-ur-Rahman (ed) Studies in natural products chemistry: Bioactive natural products (Part F). Oxford, Elsevier Science, pp 235–292Google Scholar
  5. 5.
    Seamon KB, Daly JW (1981) Activation of adenylate cyclase by the diterpene forskolin does not require the guanine nucleotide regulatory protein. J Biol Chem 256:9799–9802PubMedGoogle Scholar
  6. 6.
    Dimas K, Demetzos C, Marsellos M, Sotiriadou R, Malamas M, Kokkinopoulos D (1998) Cytotoxic activity of labdane type diterpenes against human leukemic cell lines in vitro. Planta Med 64:208–211PubMedCrossRefGoogle Scholar
  7. 7.
    Dimas K, Demetzos C, Mitakou S, Vaos B, Marselos M, Tzavaras T, Kokkinopoulos D (1999) Cytotoxic activity and antiproliferative effects of a new semi-synthetic derivative ent-3β-OH-manoyl oxide, on human leukemic cell lines. Anticancer Res 19:4065–4072PubMedGoogle Scholar
  8. 8.
    Dimas K, Kokkinopoulos D, Demetzos C, Vaos B, Marselos M, Malamas M, Tzavaras T (1999) The effect of sclareol on growth and cell cycle progression of human leukemic cell lines. Leuk Res 23:217–234PubMedCrossRefGoogle Scholar
  9. 9.
    Dimas K, Demetzos C, Ioannidis P, Trangas T (2001) Labdane type diterpenes down-regulate the expression of c-Myc protein but not of Bcl-2, in human leukemia T-cell lines undergoing apoptosis. Leuk Res 25:449–454PubMedCrossRefGoogle Scholar
  10. 10.
    Souza-Fagundes EM, Brumatti G, Martins-Filho OA, Correa-Oliveira R, Zani CL, Amarante-Mendesr GP (2003) Myriadenolide, a labdane diterpene isolated from Alomia myriadenia (asteraceae) induces depolarization of mitochondrial membranes and apoptosis associated with activation of caspases-8, -9, and -3 in Jurkat and THP-1 cells. Exp Cell Res 290:420–426PubMedCrossRefGoogle Scholar
  11. 11.
    Li WX, Cui CB, Cai B, Yaor XS (2005) Labdane-type diterpenes as new cell cycle inhibitors and apoptosis inducers from Vitex trifolia L. J Asian Nat Prod Re 7:95–105CrossRefGoogle Scholar
  12. 12.
    Dimas K, Papadaki M, Tsimplouli C, Hatziantoniou S, Alevizopoulos K, Pantazis P, Demetzos C (2006). Labd-14-ene-8, 13-diol (sclareol) induces cell cycle arrest and apoptosis in human breast cancer cells and enhances the activity of anticancer drugs. Biomed Pharmacother 60:127–133PubMedCrossRefGoogle Scholar
  13. 13.
    Hatziantoniou S, Dimas K, Georgopoulos A, Sotiriadou N, Demetzos C (2006) Cytotoxic and antitumor activity of liposome-incorporated sclareol against cancer cell lines and human colon cancer xenografts. Pharmacol Res 53:80–87PubMedCrossRefGoogle Scholar
  14. 14.
    Ulubelen A, Topcu G, Eris C, Sonmez U, Kartal M, Kurucu S, Bozok-Johansson C (1994) Terpenoids from Salvia sclarea. Phytochemistry 36:971–974PubMedCrossRefGoogle Scholar
  15. 15.
    Strasser A, O’Connor L, Dixit VM (2001) Apoptosis signaling. Ann Rev Biochem 69:217–245CrossRefGoogle Scholar
  16. 16.
    Salvase GS, Abrams JM (2004) Caspase activation—stepping on the gas or releasing the brakes? Lessons from humans and flies. Oncogene 23:2774–2784CrossRefGoogle Scholar
  17. 17.
    Krammer PH, Debatin KM (2004) Death receptors in chemotherapy and cancer. Oncogene 23:2950–2966PubMedCrossRefGoogle Scholar
  18. 18.
    Balan KV, Demetzos C, Prince J, Dimas K, Cladaras M, Han Z, Wyche JH, Pantazis P (2005) Induction of apoptosis in human colon cancer HCT116 cells treated with an extract of the plant product, Chios mastic gum. In Vivo 19:93–102PubMedGoogle Scholar
  19. 19.
    Balan KV, Prince J, Han Z, Dimas K, Cladaras M, Wyche JH, Sitaras NM, Pantazis P (2006) Antiproliferative activity and induction of apoptosis in human colon cancer cells treated in vitro with constituents of a product derived from Pistacia lentiscus L. var. chia. Phytomedicine, in pressGoogle Scholar
  20. 20.
    Kshirsagar NA, Pandya SK, Kirodian BG, Sanath S (2005) Liposomal drug delivery system from laboratory to clinic. J Postgrad Med 51:S5–S15PubMedGoogle Scholar
  21. 21.
    Zamboni WC (2005) Liposomal, nanoparticle, and conjugated formulations of anticancer agents. Clin Cancer Res 11:8230–8234PubMedCrossRefGoogle Scholar
  22. 22.
    Hart SL (2005) Lipid carriers for gene therapy. Curr Drug Deliv 2:423–428PubMedCrossRefGoogle Scholar
  23. 23.
    Chen Y, Dalwadi G, Benson HA (2004) Drug delivery across the blood-brain barrier. Curr Drug Deliv 1:361–376PubMedCrossRefGoogle Scholar
  24. 24.
    Bartsch M, Weeke-Klimp AH, Meijer DK, Scherphof GL, Kamps JA (2005) Cell-specific targeting of lipid-based carriers for ODN and DNA. J Liposome Res 15:59–92PubMedCrossRefGoogle Scholar
  25. 25.
    Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D, Warren J, Bokesch H, Kenney S, Boyd M (1990) New colorimetric cytotoxicity assay for anticancer drug screening. J Natl Cancer Inst 82:1107–1114PubMedCrossRefGoogle Scholar
  26. 26.
    Pantazis P, Chatterjee D, Han Z, Wyche JH (2000) Differentiation of human malignant melanoma cells that escape apoptosis following treatment with 9-nitrocamptothecin in vivo. Neoplasia 1:231–240CrossRefGoogle Scholar
  27. 27.
    Hu X, Balan KV, Ramos-DeSimone N, Wyche JH, Han Z, Pantazis P (2003) Differential susceptibility to 9-nitrocamptothecin (9-NC)-induced apoptosis in clones derived from a human ovarian cancer cell line, possible implications in the treatment of ovarian cancer patients with 9-NC. Anticancer Drugs 14:427–436PubMedCrossRefGoogle Scholar
  28. 28.
    Corbett T, Valeriote F, LoRusso P, Polin L, Pancharov C, Pugh S, Whyte K, Knight J, Demchick L, Jones J, Jones L, Lissow L (1997) In vivo methods for screening and preclinical testing. In vivo methods for screening and preclinical testing. In: Teicher B (ed) Anticancer drug development guide: Preclinical screening, clinical trials, and approval. Humana Press, Tobwa, NJ, pp 75–99Google Scholar
  29. 29.
    Pluquet O, North S, Bhoumik A, Dimas K, Ronai Z, Hainaut P (2003) The cytoprotective aminothiol WR1065 activates p53 through a non genotoxic signaling pathway involving c-Jun N-terminal kinase. J Biol Chem 278:11879–11887PubMedCrossRefGoogle Scholar
  30. 30.
    Cattoretti G, Becker MH, Key G, Duchrow M, Schluter C, Galle J, Gerdes J (1992) Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol 168:57–363CrossRefGoogle Scholar
  31. 31.
    Yu CC, Woods AL, Levison DA (1992) The assessment of cellular proliferation by immunohistochemistry, a review of currently available methods and their applications. Histochemistry J 24:121–131CrossRefGoogle Scholar
  32. 32.
    Magdelenat H (1992) Tumour markers in oncology: past, present and future. J Immunol Methods 150:133–143PubMedCrossRefGoogle Scholar
  33. 33.
    van Diese PJ, Van Der Wall E, Baak JP (2004) Prognostic value of proliferation in invasive breast cancer: a review. J Clin Pathol 57:675–681CrossRefGoogle Scholar
  34. 34.
    Singh RP, Agarwal R (2006) Natural flavonoids targeting deregulated cell cycle progression in cancer cells. Curr Drug Targets 7:345–354PubMedCrossRefGoogle Scholar
  35. 35.
    D’Incalci M, Steward WP, Gescher AJ (2005) Use of cancer chemopreventive phytochemicals as antineoplastic agents. Lancet Oncol 6:899–904PubMedCrossRefGoogle Scholar
  36. 36.
    Nishino H, Murakoshi M, Mou XY, Wada S, Masuda M, Ohsaka Y, Satomi Y, Jinno K (2005) Cancer prevention by phytochemicals. Oncology 69(suppl 1):38–40PubMedCrossRefGoogle Scholar
  37. 37.
    Collins AR (2005) Antioxidant intervention as a route to cancer prevention. Eur J Cancer 41:1923–1930PubMedCrossRefGoogle Scholar
  38. 38.
    Gescher A (2004) Polyphenolic phytochemicals versus non-steroidal anti-inflammatory drugs: which are better cancer chemopreventive agents? J Chemother 16(suppl 4):3–6PubMedGoogle Scholar
  39. 39.
    Jäättelä M (2004) Multiple cell death pathways as regulators of tumor initiation and progression. Oncogene 23:2746–2756PubMedCrossRefGoogle Scholar
  40. 40.
    Lockshin RA, Zakeri Z (2004) Caspase-independent cell death? Oncogene 23:2766–2773PubMedCrossRefGoogle Scholar
  41. 41.
    Allen TM, Cullis RP (2004) Drug delivery systems: entering the mainstream. Science 19:1818–1822CrossRefGoogle Scholar
  42. 42.
    Batist G, Ramakrishnan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Khojasteh A, Nair MK, Hoelzer K, Tkaczuk K, Park YC, Lee LW (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized, multicenter trial of metastatic breast cancer. J Clin Oncol 19:1444–1454PubMedGoogle Scholar
  43. 43.
    Yuan F, Dellian M, Fukumura D, Leunig M, Berk DA, Torchilin VP, Jain RK (1995) Vascular permeability in a human tumor xenograft: molecular size dependence and cutoff size. Cancer Res 55:3752–3756PubMedGoogle Scholar
  44. 44.
    Jung M, Ko I, Lee S, Choi SJ, Youn BH, Kim SK (1998) A concise synthesis and in vitro cytotoxicity of new labdane diterpenes. Bioorg Med Chem Lett 8:3295–3298PubMedCrossRefGoogle Scholar
  45. 45.
    Lee SO, Choi SZ, Choi SU, Lee KC, Chin YW, Kim J, Kim YC, Lee KR (2005) Labdane diterpenes from Aster spathulifolius and their cytotoxic effects on human cancer cell lines. J Nat Prod 68:1471–1474PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Konstantinos Dimas
    • 1
    Email author
  • Sophia Hatziantoniou
    • 2
  • Sophia Tseleni
    • 3
  • Humaira Khan
    • 4
  • Aristidis Georgopoulos
    • 2
  • Konstantinos Alevizopoulos
    • 4
  • James H. Wyche
    • 5
  • Panayotis Pantazis
    • 1
    • 5
  • Costas Demetzos
    • 2
  1. 1.Laboratory of Pharmacology-PharmacotechnologyFoundation for Biomedical Research of the Academy of AthensAthensGreece
  2. 2.Department of Pharmaceutical TechnologySchool of Pharmacy, University of AthensAthensGreece
  3. 3.Department of PathologySchool of Medicine, University of AthensAthensGreece
  4. 4.Medexis SAKryoneriAttikiGreece
  5. 5.University of Oklahoma Health Sciences CenterOU Cancer InstituteOklahoma CityUSA

Personalised recommendations