Skip to main content
Log in

Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3

  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

The induction of apoptosis during coxsackievirus B3 (CVB3) infection is well documented. In order to study whether the inhibition of apoptosis has an impact on CVB3 replication, the pan-caspase inhibitor Z-VAD-FMK was used. The decreased CVB3 replication is based on reduced accumulation of both viral RNA and viral proteins. These effects are due to an inhibitory influence of Z-VAD-FMK on the proteolytic activity of the CVB3 proteases 2A and 3C, which was demonstrated by using the target protein poly(A)-binding protein (PABP). The antiviral effect of the structurally different pan-caspase inhibitor Q-VD-OPH was independently of the viral protease inhibition and resulted in suppression of virus progeny production and impaired release of newly produced CVB3 from infected cells. A delayed release of cytochrome c into the cytoplasm was detected in Q-VD-OPH-treated CVB3-infected cells pointing to an involvement of caspases in the initial steps of mitochondrial membrane-permeabilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Baboonian C, Davies MJ, Booth JC, McKenna WJ (1997) Coxsackie B viruses and human heart disease. Curr Top Microbiol Immunol 223:31–52

    PubMed  CAS  Google Scholar 

  2. Baboonian C, McKenna W (2003) Eradication of viral myocarditis: is there hope? J Am Coll Cardiol 42:473–476

    Article  PubMed  Google Scholar 

  3. Woodruff JF (1980) Viral myocarditis. a review. Am J Pathol 101:425–484

    PubMed  CAS  Google Scholar 

  4. Baboonian C, Treasure T (1997) Meta-analysis of the association of enteroviruses with human heart disease. Heart 78:539–543

    PubMed  CAS  Google Scholar 

  5. Liu PP, Mason JW (2001) Advances in the understanding of myocarditis. Circulation 104:1076–1082

    PubMed  CAS  Google Scholar 

  6. Ramsingh AI (1997) Coxsackieviruses and Pancreatitis. Front Biosci 2:e53–62

    PubMed  CAS  Google Scholar 

  7. Pallansch MA (1997) Coxsackievirus B epidemiology and public health concerns. Curr Top Microbiol Immunol 223:13–30

    PubMed  CAS  Google Scholar 

  8. Muckelbauer JK, Kremer M, Minor I et al (1995) The structure of coxsackievirus B3 at 3.5 A resolution. Structure 3:653–667

    Article  PubMed  CAS  Google Scholar 

  9. Ohlenschlager O, Wohnert J, Bucci E et al (2004) The structure of the stemloop D subdomain of coxsackievirus B3 cloverleaf RNA and its interaction with the proteinase 3C. Structure (Camb) 12:237–248

    Article  CAS  Google Scholar 

  10. Taylor LA, Carthy CM, Yang D et al (2000) Host gene regulation during coxsackievirus B3 infection in mice: assessment by microarrays. Circ Res 87:328–334

    PubMed  Google Scholar 

  11. Rassmann A, Henke A, Zobawa M et al (2006) Proteome alterations in human host cells infected with coxsackievirus B3. J Gen Virol 87:2631–2638

    Article  PubMed  CAS  Google Scholar 

  12. Huber M, Watson KA, Selinka HC et al (1999) Cleavage of RasGAP and phosphorylation of mitogen-activated protein kinase in the course of coxsackievirus B3 replication. J Virol 73:3587–3594

    PubMed  CAS  Google Scholar 

  13. Luo H, Yanagawa B, Zhang J et al (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76:3365–3373

    Article  PubMed  CAS  Google Scholar 

  14. Opavsky MA, Martino T, Rabinovitch M et al (2002) Enhanced ERK-1/2 activation in mice susceptible to coxsackievirus- induced myocarditis. J Clin Invest 109:1561–1569

    Article  PubMed  CAS  Google Scholar 

  15. Henke A, Huber S, Stelzner A, Whitton JL (1995) The role of CD8+ T lymphocytes in coxsackievirus B3-induced myocarditis. J Virol 69:6720–6728

    PubMed  CAS  Google Scholar 

  16. Feuer R, Mena I, Pagarigan RR, Harkins S, Hassett DE, Whitton JL (2003) Coxsackievirus B3 and the neonatal CNS: the roles of stem cells, developing neurons, and apoptosis in infection, viral dissemination, and disease. Am J Pathol 163:1379–1393

    PubMed  CAS  Google Scholar 

  17. Saraste A, Arola A, Vuorinen T et al (2003) Cardiomyocyte apoptosis in experimental coxsackievirus B3 myocarditis. Cardiovasc Pathol 12:255–262

    Article  PubMed  Google Scholar 

  18. Yuan JP, Zhao W, Wang HT et al (2003) Coxsackievirus B3-induced apoptosis and caspase-3. Cell Res 13:203–209

    Article  PubMed  CAS  Google Scholar 

  19. Huber SA, Budd RC, Rossner K, Newell MK (1999) Apoptosis in coxsackievirus B3-induced myocarditis and dilated cardiomyopathy. Ann NY Acad Sci 887:181–190

    Article  PubMed  CAS  Google Scholar 

  20. Carthy CM, Granville DJ, Watson KA et al (1998) Caspase activation and specific cleavage of substrates after coxsackievirus B3-induced cytopathic effect in HeLa cells. J Virol 72:7669–7675

    PubMed  CAS  Google Scholar 

  21. Colston JT, Chandrasekar B, Freeman GL (1998) Expression of apoptosis-related proteins in experimental coxsackievirus myocarditis. Cardiovasc Res 38:158–168

    Article  PubMed  CAS  Google Scholar 

  22. Carthy CM, Yanagawa B, Luo H et al (2003) Bcl-2 and Bcl-xL overexpression inhibits cytochrome c release, activation of multiple caspases, and virus release following coxsackievirus B3 infection. Virology 313:147–157

    Article  PubMed  CAS  Google Scholar 

  23. Henke A, Launhardt H, Klement K, Stelzner A, Zell R, Munder T (2000) Apoptosis in coxsackievirus B3-caused diseases: interaction between the capsid protein VP2 and the proapoptotic protein siva. J Virol 74:4284–4290

    Article  PubMed  CAS  Google Scholar 

  24. Henke A, Nestler M, Strunze S et al (2001) The apoptotic capability of coxsackievirus B3 is influenced by the efficient interaction between the capsid protein VP2 and the proapoptotic host protein Siva. Virology 289:15–22

    Article  PubMed  CAS  Google Scholar 

  25. Martin U, Nestler M, Munder T, Zell R, Sigusch HH, Henke A (2004) Characterization of coxsackievirus B3-caused apoptosis under in vitro conditions. Med Microbiol Immunol (Berl) 193:133–139

    Article  CAS  Google Scholar 

  26. Knowlton KU, Jeon ES, Berkley N, Wessely R, Huber S (1996) A mutation in the puff region of VP2 attenuates the myocarditic phenotype of an infectious cDNA of the Woodruff variant of coxsackievirus B3. J Virol 70:7811–7818

    PubMed  CAS  Google Scholar 

  27. Feuer R, Mena I, Pagarigan R, Slifka MK, Whitton JL (2002) Cell cycle status affects coxsackievirus replication, persistence, and reactivation in vitro. J Virol 76:4430–4440

    Article  PubMed  CAS  Google Scholar 

  28. Slifka MK, Pagarigan R, Mena I, Feuer R, Whitton JL (2001) Using recombinant coxsackievirus B3 to evaluate the induction and protective efficacy of CD8+ T cells during picornavirus infection. J Virol 75:2377–2387

    Article  PubMed  CAS  Google Scholar 

  29. Caserta TM, Smith AN, Gultice AD, Reedy MA, Brown TL (2003) Q-VD-OPh, a broad spectrum caspase inhibitor with potent antiapoptotic properties. Apoptosis 8:345–352

    Article  PubMed  CAS  Google Scholar 

  30. Melnikov VY, Faubel S, Siegmund B, Lucia MS, Ljubanovic D, Edelstein CL (2002) Neutrophil-independent mechanisms of caspase-1- and IL-18-mediated ischemic acute tubular necrosis in mice. J Clin Invest 110:1083–1091

    Article  PubMed  CAS  Google Scholar 

  31. Adrain C, Creagh EM, Martin SJ (2001) Apoptosis-associated release of Smac/DIABLO from mitochondria requires active caspases and is blocked by Bcl-2. Embo J 20:6627–6636

    Article  PubMed  CAS  Google Scholar 

  32. Cunningham KA, Chapman NM, Carson SD (2003) Caspase-3 activation and ERK phosphorylation during CVB3 infection of cells: influence of the coxsackievirus and adenovirus receptor and engineered variants. Virus Res 92:179–186

    Article  PubMed  CAS  Google Scholar 

  33. Si X, Luo H, Morgan A et al (2005) Stress-activated protein kinases are involved in coxsackievirus B3 viral progeny release. J Virol 79:13875–13881

    Article  PubMed  CAS  Google Scholar 

  34. Deszcz L, Seipelt J, Vassilieva E, Roetzer A, Kuechler E (2004) Antiviral activity of caspase inhibitors: effect on picornaviral 2A proteinase. FEBS Lett 560:51–55

    Article  PubMed  CAS  Google Scholar 

  35. Barco A, Feduchi E, Carrasco L (2000) Poliovirus protease 3C(pro) kills cells by apoptosis. Virology 266:352–360

    Article  PubMed  CAS  Google Scholar 

  36. Calandria C, Irurzun A, Barco A, Carrasco L (2004) Individual expression of poliovirus 2Apro and 3Cpro induces activation of caspase-3 and PARP cleavage in HeLa cells. Virus Res 104:39–49

    Article  PubMed  CAS  Google Scholar 

  37. Schotte P, Declercq W, Van Huffel S, Vandenabeele P, Beyaert R (1999) Non-specific effects of methyl ketone peptide inhibitors of caspases. FEBS Lett 442:117–121

    Article  PubMed  CAS  Google Scholar 

  38. Badorff C, Berkely N, Mehrotra S, Talhouk JW, Rhoads RE, Knowlton KU (2000) Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a dystrophin-based substrate analogue. J Biol Chem 275:11191–11197

    Article  PubMed  CAS  Google Scholar 

  39. DeBiasi RL, Robinson BA, Sherry B et al (2004) Caspase inhibition protects against reovirus-induced myocardial injury in vitro and in vivo. J Virol 78:11040–11050

    Article  PubMed  CAS  Google Scholar 

  40. Catalan MP, Esteban J, Subira D, Egido J, Ortiz A (2003) Inhibition of caspases improves bacterial clearance in experimental peritonitis. Perit Dial Int 23:123–126

    PubMed  CAS  Google Scholar 

  41. Piguet PF, Kan CD, Vesin C (2002) Thrombocytopenia in an animal model of malaria is associated with an increased caspase-mediated death of thrombocytes. Apoptosis 7:91–98

    Article  PubMed  CAS  Google Scholar 

  42. Carlson DL, Willis MS, White DJ, Horton JW, Giroir BP (2005) Tumor necrosis factor-alpha-induced caspase activation mediates endotoxin-related cardiac dysfunction. Crit Care Med 33:1021–1028

    Article  PubMed  CAS  Google Scholar 

  43. Piguet PF, Vesin C, Donati Y, Barazzone C (1999) TNF-induced enterocyte apoptosis and detachment in mice: induction of caspases and prevention by a caspase inhibitor, ZVAD-fmk. Lab Invest 79:495–500

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Deutsche Forschungsgemeinschaft grant HE 2910/6-1. Purified 2A protease of CVB3 was kindly provided by Dr. Joachim Seipelt at the Max. F. Perutz Laboratories, University Departments at the Vienna Biocenter, Department of Medical Biochemistry, Medical University Vienna. The plasmid pET28a (N-terminal His6-tag on PABP) was kindly provided by Dr. Matthias Görlach, Leibniz Institute for Age Research − Fritz-Lipmann-Institute e.V., Jena, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Henke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martin, U., Jarasch, N., Nestler, M. et al. Antiviral effects of pan-caspase inhibitors on the replication of coxsackievirus B3. Apoptosis 12, 525–533 (2007). https://doi.org/10.1007/s10495-006-0015-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-006-0015-y

Keywords

Navigation