, Volume 10, Issue 1, pp 91–104 | Cite as

Evidence in favour of a role for peripheral-type benzodiazepine receptor ligands in amplification of neuronal apoptosis

  • E. G. Jordà
  • A. Jiménez
  • E. Verdaguer
  • A. M. Canudas
  • J. Folch
  • F. X. Sureda
  • A. Camins
  • M. PallàsEmail author


The mitochondrial peripheral benzodiazepine receptor (PBR) is involved in a functional structure designated as the mitochondrial permeability transition (MPT) pore, which controls apoptosis. PBR expression in nervous system has been reported in glial and immune cells. We now show expression of both PBR mRNA and protein, and the appearance of binding of a synthetic ligand fluo-FGIN-1-27 in mitochondria of rat cerebellar granule cells (CGCs). Additionally, the effect of PBR ligands on colchicine-induced apoptosis was investigated. Colchicine-induced neurotoxicity in CGCs was measured at 24 h. We show that, in vitro, PBR ligands 1-(2-chlorophenyl-N-methylpropyl)-3-isoquinolinecarboxamide (PK11195), 7-chloro-5-(4-chlorophenyl)-1,3-dihydro-1-methyl-2H-1,4- benzodiazepin-2-one (Ro5-4864) and diazepam (25– 50 μM) enhanced apoptosis induced by colchicine, as demonstrated by viability experiments, flow cytometry and nuclear chromatin condensation. Enhancement of colchicine-induced apoptosis was characterized by an increase in mitochondrial release of cytochrome c and AIF proteins and an enhanced activation of caspase-3, suggesting mitochondrion dependent mechanism that is involved in apoptotic process. Our results indicate that exposure of neural cells to PBR ligands generates an amplification of apoptotic process induced by colchicine and that the MPT pore may be involved in this process.


AIF cerebellar granule cells colchicine Cyt c mitochondrial permeability transition peripheral benzodiazepine receptor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Szabo I, Zoratti M. The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 1993; 330: 201–205.PubMedGoogle Scholar
  2. 2.
    Kuhlmann AC, Guilarte TR. Regional and temporal expression of the peripheral benzodiazepine receptor in MPTP neurotoxicity. Toxicol Sci 1999; 48: 107–116.PubMedGoogle Scholar
  3. 3.
    Zamzami N, Hirsch T, Dallaporta B, Petit PX, Kroemer G. Mitochondrial implication in accidental and programmed cell death: Apoptosis and necrosis. J Bioenerg Biomembr 1997; 29: 185–193.PubMedGoogle Scholar
  4. 4.
    Pastorino JG, Simbula G, Yamamoto K, Glascott PA, Jr, Rothman RJ, Farber JL. The cytotoxicity of tumor necrosis factor depends on induction of the mitochondrial permeability transition. J Biol Chem 1996; 271: 29792–29798.PubMedGoogle Scholar
  5. 5.
    Kletsas D, Li W, Han Z, Papadopoulos V. Peripheral-type benzodiazepine receptor (PBR) and PBR drug ligands in fibroblast and fibrosarcoma cell proliferation: Role of ERK, c-Jun and ligand-activated PBR-independent pathways. Biochem Pharmacol 2004; 67: 1927–1932.PubMedGoogle Scholar
  6. 6.
    Tanimoto Y, Onishi Y, Sato Y, Kizaki H. Benzodiazepine receptor agonists modulate thymocyte apoptosis through reduction of the mitochondrial transmembrane potential. Jpn J Pharmacol 1999; 79: 177–183.PubMedGoogle Scholar
  7. 7.
    Marchetti P, Trincavelli L, Giannarelli R, et al. Characterization of peripheral benzodiazepine receptors in purified large mammal pancreatic islets. Biochem Pharmacol 1996; 51: 1437–1442.PubMedGoogle Scholar
  8. 8.
    Sutter AP, Maaser K, Hopfner M, et al. Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human esophageal cancer cells. Int J Cancer 2002; 102: 318–327.PubMedGoogle Scholar
  9. 9.
    Decaudin D, Castedo M, Nemati F, et al. Peripheral benzodiazepine receptor ligands reverse apoptosis resistance of cancer cells in vitro and in vivo. Cancer Res 2002; 62: 1388–1393.PubMedGoogle Scholar
  10. 10.
    Hardwick M, Fertikh D, Culty M, Li H, Vidic B, Papadopoulos V. Peripheral-type benzodiazepine receptor (PBR) in human breast cancer: Correlation of breast cancer cell aggressive phenotype with PBR expression, nuclear localization, and PBR-mediated cell proliferation and nuclear transport of cholesterol. Cancer Res 1999; 59: 831–842.PubMedGoogle Scholar
  11. 11.
    Park CH, Carboni E, Wood PL, Gee KW. Characterization of peripheral benzodiazepine type sites in a cultured murine BV-2 microglial cell line. Glia 1996; 16: 65–70.PubMedGoogle Scholar
  12. 12.
    Banati RB, Myers R, Kreutzberg GW. PK (‘peripheral benzodiazepine’)–binding sites in the CNS indicate early and discrete brain lesions: Microautoradiographic detection of [3H]PK11195 binding to activated microglia. J Neurocytol 1997; 26: 77–82.CrossRefPubMedGoogle Scholar
  13. 13.
    Norenberg MD, Bender AS. Astrocyte swelling in liver failure: Role of glutamine and benzodiazepines. Acta Neurochir Suppl (Wien) 1994; 60: 24–27.Google Scholar
  14. 14.
    Rao VL, Bowen KK, Rao AM, Dempsey RJ. Up-regulation of the peripheral-type benzodiazepine receptor expression and [(3)H]PK11195 binding in gerbil hippocampus after transient forebrain ischemia. J Neurosci Res 2001; 64: 493–500.PubMedGoogle Scholar
  15. 15.
    Raghavendra RV, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 2000; 161: 102–114.Google Scholar
  16. 16.
    Kuhlmann AC, Guilarte TR. The peripheral benzodiazepine receptor is a sensitive indicator of domoic acid neurotoxicity. Brain Res 1997; 751: 281–288.PubMedGoogle Scholar
  17. 17.
    Raghavendra RV, Bowen KK, Dhodda VK, et al. Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J Neurochem 2002; 83: 1072–1086.Google Scholar
  18. 18.
    Canudas AM, Friguls B, Planas AM, et al. MPP(+) injection into rat substantia nigra causes secondary glial activation but not cell death in the ipsilateral striatum. Neurobiol Dis 2000; 7: 343–361.CrossRefPubMedGoogle Scholar
  19. 19.
    Raghavendra RV, Bowen KK, Dhodda VK, et al. Gene expression analysis of spontaneously hypertensive rat cerebral cortex following transient focal cerebral ischemia. J Neurochem 2002; 83: 1072–1086.Google Scholar
  20. 20.
    Bruce JH, Ramirez AM, Lin L, Oracion A, Agarwal RP, Norenberg MD. Peripheral-type benzodiazepines inhibit proliferation of astrocytes in culture. Brain Res 1991; 564: 167–170.PubMedGoogle Scholar
  21. 21.
    Cahard D, Canat X, Carayon P, Roque C, Casellas P, Le Fur G. Subcellular localization of peripheral benzodiazepine receptors on human leukocytes. Lab Invest 1994; 70: 23–28.PubMedGoogle Scholar
  22. 22.
    Diorio D, Welner SA, Butterworth RF, Meaney MJ, Suranyi-Cadotte BE. Peripheral benzodiazepine binding sites in Alzheimer’s disease frontal and temporal cortex. Neurobiol Aging 1991; 12: 255–258.PubMedGoogle Scholar
  23. 23.
    Owen F, Poulter M, Waddington JL, Mashal RD, Crow TJ. [3H]R05-4864 and [3H]flunitrazepam binding in kainate-lesioned rat striatum and in temporal cortex of brains from patients with senile dementia of the Alzheimer type. Brain Res 1983; 278: 373–375.PubMedGoogle Scholar
  24. 24.
    Messmer K, Reynolds GP. Increased peripheral benzodiazepine binding sites in the brain of patients with Huntington’s disease. Neurosci Lett 1998; 241: 53–56.PubMedGoogle Scholar
  25. 25.
    Ferrarese C, Marzorati C, Perego M, et al. Effect of anticonvulsant drugs on peripheral benzodiazepine receptors of human lymphocytes. Neuropharmacology 1995; 34: 427–431.PubMedGoogle Scholar
  26. 26.
    Ferrarese C, Appollonio I, Frigo M, Gaini SM, Piolti R, Frattola L. Benzodiazepine receptors and diazepam-binding inhibitor in human cerebral tumors. Ann Neurol 1989; 26: 564–568.PubMedGoogle Scholar
  27. 27.
    Sacerdote P, Panerai AE, Frattola L, Ferrarese C. Benzodiazepine-induced chemotaxis is impaired in monocytes from patients with generalized anxiety disorder. Psychoneuroendocrinology 1999; 24: 243–249.PubMedGoogle Scholar
  28. 28.
    Blandini F, Cosentino M, Mangiagalli A, et al. Modifications of apoptosis-related protein levels in lymphocytes of patients with Parkinson’s disease. The effect of dopaminergic treatment. J Neural Transm 2004; 111: 1017–1030.PubMedGoogle Scholar
  29. 29.
    Hirsch T, Decaudin D, Susin SA, et al. PK11195, a ligand of the mitochondrial benzodiazepine receptor, facilitates the induction of apoptosis and reverses Bcl-2-mediated cytoprotection. Exp Cell Res 1998; 241: 426–434.PubMedGoogle Scholar
  30. 30.
    Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: The role of cytochrome c. Biochim Biophys Acta 1998; 1366: 139–149.PubMedGoogle Scholar
  31. 31.
    Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397: 441–446.CrossRefPubMedGoogle Scholar
  32. 32.
    Anholt RR, Murphy KM, Mack GE, Snyder SH. Peripheral-type benzodiazepine receptors in the central nervous system: Localization to olfactory nerves. J Neurosci 1984; 4: 593–603.PubMedGoogle Scholar
  33. 33.
    Bolger GT, Mezey E, Cott J, Weissman BA, Paul SM, Skolnick P. Differential regulation of ‘central’ and ‘peripheral’ benzodiazepine binding sites in the rat olfactory bulb. Eur J Pharmacol 1984; 105: 143–148.PubMedGoogle Scholar
  34. 34.
    Jayakumar AR, Panickar KS, Norenberg MD. Effects on free radical generation by ligands of the peripheral benzodiazepine receptor in cultured neural cells. J Neurochem 2002; 83: 1226–1234.PubMedGoogle Scholar
  35. 35.
    Karchewski LA, Bloechlinger S, Woolf CJ. Axonal injury-dependent induction of the peripheral benzodiazepine receptor in small-diameter adult rat primary sensory neurons. Eur J Neurosci 2004; 20: 671–683.PubMedGoogle Scholar
  36. 36.
    Galiegue S, Tinel N, Casellas P. The peripheral benzodiazepine receptor: A promising therapeutic drug target. Curr Med Chem 2003; 10: 1563–1572.PubMedGoogle Scholar
  37. 37.
    Beurdeley-Thomas A, Miccoli L, Oudard S, Dutrillaux B, Poupon MF. The peripheral benzodiazepine receptors: A review. J Neurooncol 2000; 46: 45–56.PubMedGoogle Scholar
  38. 38.
    Culty M, Li H, Boujrad N, et al. In vitro studies on the role of the peripheral-type benzodiazepine receptor in steroidogenesis. J Steroid Biochem Mol Biol 1999; 69: 123–130.PubMedGoogle Scholar
  39. 39.
    Weissman BA, Bolger GT, Isaac L, Paul SM, Skolnick P. Characterization of the binding of [3H]Ro 5-4864, a convulsant benzodiazepine, to guinea pig brain. J Neurochem 1984; 42: 969–975.PubMedGoogle Scholar
  40. 40.
    Basile AS, Weissman BA, Skolnick P. Maximal electroshock increases the density of [3H]Ro 5-4864 binding to mouse cerebral cortex. Brain Res Bull 1987; 19: 1–7.PubMedGoogle Scholar
  41. 41.
    Jorda EG, Verdaguer E, Canudas AM, et al. Neuroprotective action of flavopiridol, a cyclin-dependent kinase inhibitor, in colchicine-induced apoptosis. Neuropharmacology 2003; 45: 672–683.PubMedGoogle Scholar
  42. 42.
    Jorda E, Verdaguer E, Morano A, et al. Lithium prevents colchicine-induced apoptosis in rat cerebellar granule neurons. Bipolar Disord 2004; 6: 144–149.PubMedGoogle Scholar
  43. 43.
    Mattson MP. Effects of microtubule stabilization and destabilization on tau immunoreactivity in cultured hippocampal neurons. Brain Res 1992; 582: 107–118.PubMedGoogle Scholar
  44. 44.
    Verdaguer E, Garcia-Jorda E, Canudas AM, et al. Kainic acid-induced apoptosis in cerebellar granule neurons: An attempt at cell cycle re-entry. Neuroreport 2002; 13: 413–416.PubMedGoogle Scholar
  45. 45.
    Verdaguer E, Garcia-Jorda E, Jimenez A, et al. Kainic acid-induced neuronal cell death in cerebellar granule cells is not prevented by caspase inhibitors. Br J Pharmacol 2002; 135: 1297–1307.PubMedGoogle Scholar
  46. 46.
    Nath R, Huggins M, Glantz SB, et al. Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: Marker for neuronal apoptosis. Neurochem Int 2000; 37: 351–361.PubMedGoogle Scholar
  47. 47.
    Jorda E, Verdaguer E, Morano A, et al. Lithium prevents colchicine-induced apoptosis in rat cerebellar granule neurons. Bipolar Disord 2004; 6: 144–149.PubMedGoogle Scholar
  48. 48.
    Itzhak Y, Bender AS, Norenberg MD. Effect of hypoosmotic stress on peripheral-type benzodiazepine receptors in cultured astrocytes. Brain Res 1994; 644: 221–225.PubMedGoogle Scholar
  49. 49.
    Bettendorff L, Goessens G, Sluse F, et al. Thiamine deficiency in cultured neuroblastoma cells: Effect on mitochondrial function and peripheral benzodiazepine receptors. J Neurochem 1995; 64: 2013–2021.CrossRefPubMedGoogle Scholar
  50. 50.
    Romeo E, Auta J, Kozikowski AP, et al. 2-Aryl-3-indoleacetamides (FGIN-1): A new class of potent and specific ligands for the mitochondrial DBI receptor (MDR). J Pharmacol Exp Ther 1992; 262: 971–978.PubMedGoogle Scholar
  51. 51.
    Sutter AP, Maaser K, Barthel B, Scherubl H. Ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in oesophageal cancer cells: Involvement of the p38MAPK signalling pathway. Br J Cancer 2003; 89: 564–572.PubMedGoogle Scholar
  52. 52.
    Chen J, Freeman A, Liu J, Dai Q, Lee RM. The apoptotic effect of HA14-1, a Bcl-2-interacting small molecular compound, requires Bax translocation and is enhanced by PK11195. Mol Cancer Ther 2002; 1: 961–967.PubMedGoogle Scholar
  53. 53.
    Okaro AC, Fennell DA, Corbo M, Davidson BR, Cotter FE. Pk11195, a mitochondrial benzodiazepine receptor antagonist, reduces apoptosis threshold in Bcl-X(L) and Mcl-1 expressing human cholangiocarcinoma cells. Gut 2002; 51: 556–561.PubMedGoogle Scholar
  54. 54.
    Sutter AP, Maaser K, Hopfner M, et al. Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human esophageal cancer cells. Int J Cancer 2002; 102: 318–327.PubMedGoogle Scholar
  55. 55.
    Lebedeva IV, Su ZZ, Sarkar D, et al. Melanoma differentiation associated gene-7, mda-7/interleukin-24, induces apoptosis in prostate cancer cells by promoting mitochondrial dysfunction and inducing reactive oxygen species. Cancer Res 2003; 63: 8138–8144.PubMedGoogle Scholar
  56. 56.
    Strohmeier R, Roller M, Sanger N, Knecht R, Kuhl H. Modulation of tamoxifen-induced apoptosis by peripheral benzodiazepine receptor ligands in breast cancer cells. Biochem Pharmacol 2002; 64: 99–107.PubMedGoogle Scholar
  57. 57.
    Hirsch JD, Beyer CF, Malkowitz L, Loullis CC, Blume AJ. Characterization of ligand binding to mitochondrial benzodiazepine receptors. Mol Pharmacol 1989; 35: 164–172.PubMedGoogle Scholar
  58. 58.
    Leducq N, Bono F, Sulpice T, et al. Role of peripheral benzodiazepine receptors in mitochondrial, cellular, and cardiac damage induced by oxidative stress and ischemia-reperfusion. J Pharmacol Exp Ther 2003; 306: 828–837.PubMedGoogle Scholar
  59. 59.
    Casellas P, Galiegue S, Basile AS. Peripheral benzodiazepine receptors and mitochondrial function. Neurochem Int 2002; 40: 475–486.PubMedGoogle Scholar
  60. 60.
    Banker DE, Cooper JJ, Fennell DA, Willman CL, Appelbaum FR, Cotter FE. PK11195, a peripheral benzodiazepine receptor ligand, chemosensitizes acute myeloid leukemia cells to relevant therapeutic agents by more than one mechanism. Leuk Res 2002; 26: 91–106.PubMedGoogle Scholar
  61. 61.
    Maaser K, Hopfner M, Jansen A, et al. Specific ligands of the peripheral benzodiazepine receptor induce apoptosis and cell cycle arrest in human colorectal cancer cells. Br J Cancer 2001; 85: 1771–1780.PubMedGoogle Scholar
  62. 62.
    Fennell DA, Corbo M, Pallaska A, Cotter FE. Bcl-2 resistant mitochondrial toxicity mediated by the isoquinoline carboxamide PK11195 involves de novo generation of reactive oxygen species. Br J Cancer 2001; 84: 1397–1404.PubMedGoogle Scholar
  63. 63.
    Lash LH. The mitochondrial benzodiazepine receptor as a potential target protein for drug development: Demonstration of functional significance with cell lines exhibiting differential expression of Bcl-2. Toxicol Sci 2003; 74: 1–3.PubMedGoogle Scholar
  64. 64.
    Ravagnan L, Marzo I, Costantini P, et al. Lonidamine triggers apoptosis via a direct, Bcl-2-inhibited effect on the mitochondrial permeability transition pore. Oncogene 1999; 18: 2537–2546.PubMedGoogle Scholar
  65. 65.
    Jorda EG, Verdaguer E, Morano A, et al. Lithium prevents colchicine-induced apoptosis in rat cerebellar granule neurons. Bipolar Disord 2004; 6: 144–149.PubMedGoogle Scholar
  66. 66.
    Bortner CD, Cidlowski JA. Cellular mechanisms for the repression of apoptosis. Annu Rev Pharmacol Toxicol 2002; 42: 259–281.PubMedGoogle Scholar
  67. 67.
    Susin SA, Zamzami N, Castedo M, et al. Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 1996; 184: 1331–1341.PubMedGoogle Scholar
  68. 68.
    Marzo I, Susin SA, Petit PX, et al. Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 1998; 427: 198–202.PubMedGoogle Scholar
  69. 69.
    Arnoult D, Gaume B, Karbowski M, Sharpe JC, Cecconi F, Youle RJ. Mitochondrial release of AIF and EndoG requires caspase activation downstream of Bax/ Bak-mediated permeabilization. EMBO J 2003; 22: 4385–4399.PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2005

Authors and Affiliations

  • E. G. Jordà
    • 1
  • A. Jiménez
    • 1
  • E. Verdaguer
    • 1
  • A. M. Canudas
    • 1
  • J. Folch
    • 2
  • F. X. Sureda
    • 2
  • A. Camins
    • 1
  • M. Pallàs
    • 1
    Email author
  1. 1.Unitat de Farmacologia i Farmacognòsia, Facultat de FarmàciaUniversitat de Barcelona, Nucli Universitari de PedralbesBarcelonaSpain
  2. 2.Unitat de Farmacologia and Unitat de Bioquímica, Facultat de Medicina i Ciències de la SalutUniversitat Rovira i VirgiliReusSpain

Personalised recommendations