Advertisement

Computational Study of Reactants Mixing in a Rotating Detonation Combustor Using Compressible RANS

  • Sebastian Weiss
  • Myles D. BohonEmail author
  • C. Oliver Paschereit
  • Ephraim J. Gutmark
Article

Abstract

This study considers the steady-state, non-reacting mixing of fuel and air within the hydrogen-air Rotating Detonation Combustor (RDC) currently in use at TU Berlin. The interaction of reactants occurs in a confined jet-in-crossflow (JIC) configuration with an axially injected fuel jet and an air stream entering radially inwards. The investigation of the baseline flow case provided three flow characteristics primarily responsible for affecting the process of mixing: supersonic shock patterns, the existence of two major recirculation zones, and a counter-rotating vortex pair (CVP) structure. In a parametric study with nine different flow configurations, attained by the variation of reactant inlet flow rates, the effect on mixing behavior and performance was analyzed in order to determine the most impactful parameter for the RDC refill process. The air mass flow rate was identified as the primary parameter with respect to the general flow field due to the interaction of a dominant air barrel shock with the fuel jet. The low flow rate cases allowed the greater fuel and air jet interaction in the near injection region of the combustor, whereas in the far field the higher flow rate configurations attained comparable mixing quality despite more complicated fuel and air jet shock structures.

Keywords

Rotating detonation Jet-in-crossflow Mixing Pressure gain combustion Under-expanded jets 

Nomenclature

A

area, m2

A

area, m2

a

jet trajectory model factor

c

jet trajectory model exponent

D

outer diameter of the combustion annulus, m

d

fuel injection hole diameter, m

J

jet-to-crossflow momentum flux ratio

M

Mach number

m

jet trajectory model exponent

\(\dot {m}\)

mass flow rate, kg/s

p

pressure, N/m2

U

unmixedness

u

velocity, m/s

w

air inlet slot width, m

x

radial position, m

Y

mass fraction

y

axial position, m

Γ

circulation, m2/s

γ

heat capacity ratio

Δ

channel width, m

ρ

density, kg/m3

ϕ

equivalence ratio

φ

circumferential angle,

ω

vorticity, s− 1

Subscript

a

air

c

values for crossflow properties in model

F

fuel

j

values for jet properties in model

O

oxidizer

Notes

Acknowledgements

Financial support from the Einstein Foundation Berlin (grant number EVF-2015-229 (TU)) is gratefully acknowledged.

Compliance with Ethical Standards

Conflict of interests

This study was funded by the Einstein Foundation Berlin (grant number EVF-2015-229 (TU)). The authors declare that they have no conflict of interest.

References

  1. 1.
    Heiser, W.H., Pratt, D.T.: Thermodynamic cycle analysis of pulse detonation engines. J. Propuls. Power 18(1), 68–76 (2002)CrossRefGoogle Scholar
  2. 2.
    Wolański, P.: Detonation engines. J. KONES Powertrain Transport 18(3), 515–521 (2011)Google Scholar
  3. 3.
    St. George, A., Driscoll, R., Gutmark, E., Munday, D.: Experimental comparison of axial turbine performance under steady and pulsating flows. J. Turbomach. 136(11), 1–11 (2014)CrossRefGoogle Scholar
  4. 4.
    Voitsekhovskii, B.V.: Stationary detonation. Soviet Phys. Doklady 4(6), 1207–1209 (1959)Google Scholar
  5. 5.
    Nicholls, J.A., Cullen, R.E., Ragland, K.W.: Feasibility studies of a rotating detonation wave rocket motor. J. Spacecraft 3(6), 893–898 (1966)CrossRefGoogle Scholar
  6. 6.
    Naples, A., Hoke, J., Karnesky, J., Schauer, F.: Flowfield characterization of a rotating detonation engine. AIAA Journal, pp. 1–6 (2013)Google Scholar
  7. 7.
    Duvall, J., Gamba, M.: Characterization of reactant mixing in a rotating detonation engine using schlieren imaging and planar laser induced fluorescence. AIAA Propulsion and Energy Forum (2018)Google Scholar
  8. 8.
    Frolov, S.M., Dubrovskii, A.V., Ivanov, V.S.: Three-Dimensional Numerical simulation of the operation of a Rotating-Detonation chamber with separate supply of fuel and oxidizer. Russian J. Phys. Chem. B 7(1), 35–43 (2013)CrossRefGoogle Scholar
  9. 9.
    Rankin, B.A., Fugger, C.A., Richardson, D.R., Cho, K.Y., Hoke, J.L., Caswell, A.W., Gord, J.R., Schauer, F.R.: Evaluation of Mixing Processes in a Non-Premixed Rotating Detonation Engine Using Acetone PLIF Imaging. 54th AIAA Aerospace Sciences Meeting, San Diego, CA, pp. 1–12 (2016)Google Scholar
  10. 10.
    Driscoll, R., Aghasi, P., St. George, A., Gutmark, E.J.: Three-dimensional, numerical investigation of reactant injection variation in a H2/air rotating detonation engine. Int. J. Hydrogen Energy 41, 5162–5175 (2016)CrossRefGoogle Scholar
  11. 11.
    Shank, J.: Development and Testing of a Rotating Detonation Engine Run on Hydrogen and Air. Ph.D. thesis, Air Force Institute of Technology (2012)Google Scholar
  12. 12.
    Fric, T.F.: Structure in the Near Field of the Transverse Jet. Ph.D. thesis, California Institute of Technology (1990)Google Scholar
  13. 13.
    Fric, T.F., Roshko, A.: Views of the transverse jet near field. Phys. Fluids 31 (1988)CrossRefGoogle Scholar
  14. 14.
    Fric, T.F., Roshko, A.: Structure in the near field of the transverse jet. Turbulent Shear Flows 7 (cd. F. Durst others.) Springer, Berlin (1991)Google Scholar
  15. 15.
    Fric, T.F., Roshko, A.: Vortical structure in the wake of a transverse jet. J. Fluid Mech. 279, 1–47 (1994)CrossRefGoogle Scholar
  16. 16.
    Cortelezzi, L., Karagozian, A.R.: On the formation of the counter-rotating vortex pair in transverse jets. J. Fluid Mech. 446, 347–373 (2001)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Kelso, R.M., Lim, T.T., Perry, A.E.: An experimental study of round jet in Cross-Flow. J. Fluid Mech. 306, 111–144 (1996)CrossRefGoogle Scholar
  18. 18.
    Wang, H.: A Study of Gaseous Transverse Injection and Mixing Process in a Simulated Engine Intake Port. Ph.D. thesis, Politecnico di Milano (2013)Google Scholar
  19. 19.
    Broadwell, J.E., Breidenthal, R.E.: Structure and mixing of a transverse jet in incompressible flow. J. Fluid Mech. 148, 405–412 (1984)CrossRefGoogle Scholar
  20. 20.
    Muppidi, S., Mahesh, K.: A two-dimensional model problem to explain CVP formation in a transverse jet. University of Minnesota (1986), pp. 1–14 (2001)Google Scholar
  21. 21.
    Cutler, P.R.E.: On the Structure and Mixing of a Jet in Crossflow. Ph.D. thesis, The University of Adelaide (2002)Google Scholar
  22. 22.
    Schetz, J.A., Billig, F.S.: Penetration of gaseous jets injected into a supersonic stream. J. Spacecr. Rocket. 3(11), 1658–1665 (1966)CrossRefGoogle Scholar
  23. 23.
    Ben-Yakar, A., Mungal, M.G., Hanson, R.K.: Time evolution and mixing characteristics of hydrogen and ethylene transverse jets in supersonic crossflows. Phys. Fluids 18, 1–16 (2006)CrossRefGoogle Scholar
  24. 24.
    Gruber, M.R., Nejadt, A.S., Chen, T.H., Dutton, J.C.: Mixing and penetration studies of sonic jets in a Mach 2 freestream. J. Propuls. Power 11, 315–323 (1995)CrossRefGoogle Scholar
  25. 25.
    Rana, Z.A., Thornber, B., Drikakis, D.: Transverse jet injection into a supersonic turbulent cross-flow. Phys. Fluids 23, 046103 (2011).  https://doi.org/10.1063/1.3570692 CrossRefGoogle Scholar
  26. 26.
    Greenshields, C.J.: OpenFOAM User Guide version 5.0 (2017)Google Scholar
  27. 27.
    Kraposhin, M.: Study of capabilities of hybrid scheme for advection terms approximation in mathematical models of compressible flows. Trudy ISP RAN / Proc. ISP RAS 28(3), 267–326 (2016)CrossRefGoogle Scholar
  28. 28.
    Kraposhin, M., Bovtrikova, A., Strijhak, S.: Adaptation of Kurganov-Tadmor numerical scheme for applying in combination with the PISO method in numerical simulation of flows in a wide range of mach numbers. Procedia Comput. Sci. 66, 43–52 (2015)CrossRefGoogle Scholar
  29. 29.
    DeSpirito, J.: Turbulence model effects on Cold-Gas lateral jet interaction in a supersonic crossflow. Army Research Laboratory, pp. 50 (2014)Google Scholar
  30. 30.
    Chauvet, N., Deck, S., Jacquin, L.: Numerical study of mixing enhancement in a supersonic round jet. AIAA J. 45(7), 1675–1687 (2007)CrossRefGoogle Scholar
  31. 31.
    Kurganov, A., Tadmor, E.: New High-Resolution central schemes for nonlinear conservation laws and Convection-Diffusion equations. J. Comput. Phys. 160, 241–282 (2000)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Richardson, L.F.: The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses. Trans. R. Soc. Lond. 210, 307–357 (1910)CrossRefGoogle Scholar
  33. 33.
    Richardson, L.F., Gaunt, J.A.: The deferred approach to the limit. Trans. R. Soc. Lond. 226, 299–361 (1927)CrossRefGoogle Scholar
  34. 34.
    Celik, I.B.: Procedure for estimation and reporting of discretization error in CFD applications. Journal of Fluids Engineering 130 (2008)Google Scholar
  35. 35.
    Bluemner, R., Bohon, M.D., Paschereit, C.O., Gutmark, E.J.: Experimental study of reactant mixing in model rotating detonation combustor geometries. Flow, Turbulence and Combustion (2018)CrossRefGoogle Scholar
  36. 36.
    Bluemner, R., Bohon, M.D., Nguyen, H.Q., Paschereit, C.O.: Influence of Reactant Injection Parameters on RDC Mode of Operation. In: 57Th AIAA Aerospace Sciences Meeting. San Diego, CA (2019)Google Scholar
  37. 37.
    Abramovich, G.: The theory of turbulent jets. Massachusetts Institute of Technology Press, Cambridge (1963)Google Scholar
  38. 38.
    Margason, R.J.: The path of a jet directed at large angles to a subsonic free stream. NASA TN d-4919 (1968)Google Scholar
  39. 39.
    Orth, R.C., Funk, J.A.: An experimental and comparative study of jet penetration in supersonic flow. AIAA J. 5, 1–9 (1967)CrossRefGoogle Scholar
  40. 40.
    Radulescu, M.I., Law, C.K.: The transient start of supersonic jets. J. Fluid Mech. 578, 331–369 (2007).  https://doi.org/10.1017/S0022112007004715 MathSciNetCrossRefGoogle Scholar
  41. 41.
    Ishii, R., Fujimoto, H., Hatta, N., Umeda, Y.: Experimental and numerical analysis of circular pulse jets. J. Fluid Mech. 392, 129–153 (1999).  https://doi.org/10.1017/S0022112099005303 CrossRefGoogle Scholar
  42. 42.
    Fric, T.F.: Effects of Fuel-Air Unmixedness on NOx Emissions. J. Propuls. Power 9(5), 708–713 (1993)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chair of Fluid DynamicsTechnische Universität BerlinBerlinGermany
  2. 2.Department of Aerospace EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations