Advertisement

Separation Control by Plasma Actuators: Effects of Direct Momentum Injection and Vortex Generation

  • Federico Messanelli
  • Edoardo Frigerio
  • Elia Tescaroli
  • Marco BelanEmail author
Article
  • 67 Downloads

Abstract

In this work, Dielectric Barrier Discharge actuators with triangular tips on their exposed electrodes are applied on a NACA 0015 airfoil and tested in the wind tunnel at an airspeed of 20 m/s (Re = 330k); the actuator set has been defined after previous laboratory studies. Steady and pulsed actuation are tested on all devices, including a straight DBD as reference. Force coefficients and electrical power are measured for every actuator, evaluating their performance in terms of aerodynamic coefficients changes with respect to the smooth airfoil and to the unpowered case, which is also characterized by means of surface visualizations. The influence of discharge length and tip spacing is studied by image processing techniques. The local field of motion is characterized by means of boundary layer velocity profiles, acquired with plasma off and on. Boundary layer thickness and momentum coefficients are determined at different spanwise locations for all the devices. The results are discussed evaluating the different impacts of streamwise momentum injection and vortex generation on the actuators performance, assuming these mechanisms as proper models for the data interpretation. In turn, this leads to outline possible design rules for this kind of DBD.

Keywords

Separation control Plasma actuators Dielectric barrier discharge 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interests.

References

  1. 1.
    Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., Cazalens, M.: Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43(6), 917–928 (2007)CrossRefGoogle Scholar
  2. 2.
    Thomas, F.O., Corke, T.C., Iqbal, M., Kozlov, A., Schatzman, D.: Optimization of dielectric barrier discharge plasma actuators for active aerodynamic flow control. AIAA J. 47(9), 2169–2178 (2009)CrossRefGoogle Scholar
  3. 3.
    Durscher, R., Roy, S.: Induced flow from serpentine plasma actuators acting in quiescent air. In: 49th AIAA Aerospace Sciences Meeting, Orlando, Florida, 4–7 January 2011, AIAA 2011-957 (2011)Google Scholar
  4. 4.
    Wang, C.C., Durscher, R., Roy, S.: Three-dimensional effects of curved plasma actuators in quiescent air. J. Appl. Phys. 109(8), 083305 (2011)CrossRefGoogle Scholar
  5. 5.
    Berendt, A., Podliński, J., Mizeraczyk, J.: Comparison of airflow patterns produced by DBD actuators with smooth or saw-like discharge electrode. Journal of Physics: Conference Series 301(1), 012018, 1–4 (2011)Google Scholar
  6. 6.
    Joussot, R., Leroy, A., Weber, R., Rabat, H., Loyer, S., Hong, D.: Plasma morphology and induced airflow characterization of a DBD actuator with serrated electrode. Journal of Physics D: Applied Physics 46(12), 1–12 (2013)CrossRefGoogle Scholar
  7. 7.
    Wicks, M., Thomas, F.O., Corke, T.C., Patel, M., Cain, A.B.: Mechanism of vorticity generation in plasma streamwise vortex generators. AIAA J. 53 (11), 3404–3413 (2015)CrossRefGoogle Scholar
  8. 8.
    Jukes, T.N., Choi, K.S.: Dielectric-barrier-discharge vortex generators: characterisation and optimisation for flow separation control. Exp. Fluids 52(2), 329–345 (2012)CrossRefGoogle Scholar
  9. 9.
    Belan, M., Messanelli, F.: Compared ionic wind measurements on multi-tip corona and DBD plasma actuators. J. Electrost. 76, 278–287 (2015)CrossRefGoogle Scholar
  10. 10.
    Messanelli, F., Belan, M.: Ionic wind measurements on multi-tip plasma actuators. EPJ Web of Conferences 114(02073), 1–8 (2016)Google Scholar
  11. 11.
    Belan, M., Messanelli, F.: Wind tunnel testing of multi-tip corona actuators on a symmetric airfoil. J. Electrost. 85, 23–34 (2017)CrossRefGoogle Scholar
  12. 12.
    Messanelli, F., Belan, M.: A comparison between corona and DBD plasma actuators for separation control on an airfoil. In: 55th AIAA Aerospace Sciences Meeting, AIAA SciTech Forum, Grapevine, Texas, 9–13 January 2017, AIAA 2017-0395, pp. 1–14 (2017)Google Scholar
  13. 13.
    Messanelli, F.: Optimization of Plasma Actuators for Flow Control. PhD dissertation, PhD School of Politecnico di Milano. http://hdl.handle.net/10589/137301 (2018)
  14. 14.
    Vernet, J.A., Örlü, R., Alfredsson, P.H.: Flow separation control behind a cylindrical bump using dielectric-barrier-discharge vortex generator plasma actuators. J. Fluid Mech. 835, 852–879 (2018)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Sato, M., Aono, H., Yakeno, A., Nonomura, T., Fujii, K., Okada, K., Asada, K.: Multifactorial effects of operating conditions of dielectric-barrier-discharge plasma actuator on laminar-separated-flow control. AIAA J. 53(9), 2544–2559 (2015)CrossRefGoogle Scholar
  16. 16.
    Sato, M., Okada, K., Aono, H., Asada, K., Yakeno, A., Nonomura, T., Fujii, K.: LES of separated-flow controlled by DBD plasma actuator around NACA 0015 over Reynolds number range of 104 × 106. In: 53rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida, January 2015, AIAA 2015-0308 (2015)Google Scholar
  17. 17.
    Aono, H., Kawai, S., Nonomura, T., Sato, M., Fujii, K., Okada, K.: Plasma-actuator burst-mode frequency effects on leading-edge flow-separation control at Reynolds number 2.6 × 105. AIAA J. 55(11), 3789–3806 (2017)CrossRefGoogle Scholar
  18. 18.
    Kelley, C.L., Bowles, P., Cooney, J., He, C., Corke, T.C., Osborne, B., Silkey, J., Zehnle, J.: High Mach number leading-edge flow separation control using AC DBD plasma actuators. In: 50th AIAA Aerospace Sciences Meeting, Nashville, Tennessee, 9–12 January, 2012, AIAA 2012–0906 (2012)Google Scholar
  19. 19.
    Benard, N., Jolibois, J., Moreau, E.: Lift and drag performances of an axisymmetric airfoil controlled by plasma actuator. J. Electrost. 67(2), 133–139 (2009)CrossRefGoogle Scholar
  20. 20.
    Vernet, J.A., Örlü, R., Alfredsson, P.H.: Flow separation control by dielectric barrier discharge plasma actuation via pulsed momentum injection. AIP Adv. 8(075229), 1–19 (2018)Google Scholar
  21. 21.
    Kriegseis, J., Möller, B., Grundmann, S., Tropea, C.: Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J. Electrost. 69, 302–312 (2011)CrossRefGoogle Scholar
  22. 22.
    Barlow, J.B., Rae, W.H., Pope, A.: Low-Speed Wind Tunnel Testing. Wiley, New York (1999)Google Scholar
  23. 23.
    Kriegseis, J., Grundmann, S., Tropea, C.: Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. J. Appl. Phys. 110(013305), 1–9 (2011)Google Scholar
  24. 24.
    Mabe, J.H., Calkins, F.T., Wesley, B., Woszidlo, R., Taubert, L., Wygnanski, I.: Single dielectric barrier discharge plasma actuators for improved airfoil performance. J. Aircr. 46(3), 847–855 (2009)CrossRefGoogle Scholar
  25. 25.
    Melton, L.P., Hannon, J., Yao, C.S., Harris, J.: Active flow control at low Reynolds numbers on a NACA 0015 airfoil. In: 26th Applied Aerodynamics Conference. Number AIAA, vol. 6407 (2008)Google Scholar
  26. 26.
    He, C., Corke, T.C., Patel, M.P.: Plasma flaps and slats: an application of weakly ionized plasma actuators. J. Aircr. 46(3), 864–873 (2009)CrossRefGoogle Scholar
  27. 27.
    Komuro, A., Takashima, K., Tanaka, N., Konno, K., Nonomura, T., Kaneko, T., Ando, A., Asai, K.: Multiple control modes of nanosecond-pulse-driven plasma-actuator evaluated by forces, static pressure, and PIV measurements. Exp. Fluids 59(8), 129 (2018)CrossRefGoogle Scholar
  28. 28.
    Drela, M., Giles, M.B.: Viscous-Inviscid Analysis of transonic and low reynolds number airfoils. AIAA J. 25(10), 1347–1355 (1987)CrossRefGoogle Scholar
  29. 29.
    Lin, J.C.: Review of research on low-profile vortex generators to control boundary-layer separation. Prog. Aerosp. Sci. 38, 389–420 (2002)CrossRefGoogle Scholar
  30. 30.
    Prothin, S., Djeridi, H., Billard, J.Y.: Coherent and turbulent process analysis of the effects of a longitudinal vortex on boundary layer detachment on a naca0015 foil. J. Fluid Struct. 47, 2–20 (2014)CrossRefGoogle Scholar
  31. 31.
    Kelley, C.L., Bowles, P.O., Cooney, J., He, C., Corke, T.C., Osborne, B.A., Silkey, J., Zehnle, J.: Leading-edge separation control using alternating-current and nanosecond-pulse plasma actuators. AIAA J. 52(9), 1871–1884 (2014)CrossRefGoogle Scholar
  32. 32.
    Benard, N., Braud, P., Jolibois, J., Moreau, E.: Airflow reattachment along a NACA 0015 airfoil by a surface dielectric barrier discharge actuator time-resolved particle image velocimetry investigation. In: 4th Flow Control Conference, Washington, Seattle, 23–26 June, 2008, AIAA 2008–4202Google Scholar
  33. 33.
    Sekimoto, S., Nonomura, T., Fujii, K.: Burst-mode frequency effects of dielectric barrier discharge plasma actuator for separation control. AIAA J. 55(4), 1385–1392 (2017)CrossRefGoogle Scholar
  34. 34.
    Hall, K.D., Jumper, E.J., Corke, T.C., McLaughlin, T.E.: Potential flow model of a plasma actuator as a lift enhancement device. AIAA Paper 783, 2005 (2005)Google Scholar
  35. 35.
    Corke, T.C., Mertz, B., Patel, M.P.: Plasma flow control optimized airfoil. AIAA Paper, 1208 (2006)Google Scholar
  36. 36.
    Jukes, T.N., Choi, K.-S.: On the formation of streamwise vortices by plasma vortex generators. J. Fluid Mech. 733, 370–393 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zoppini, G., Di Vinci, L., Campanardi, G., Zanotti, A., Belan, M.: PIV characterization of a separated flow controlled by a DBD actuator. In: XXVI AIVELA National Meeting, J. Phys.: Conf. Ser. 1249–012012 (2019)Google Scholar
  38. 38.
    Vernet, J.A., Örlü, R., Söderblom, D., Elofsson, P., Alfredsson, P.H.: Plasma streamwise vortex generators for flow separation control on trucks. Flow Turbul. Combust. 100, 1101–1109 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.F.M.ParmaItaly
  2. 2.SimScale GmbHMunichGermany
  3. 3.Politecnico di MilanoMilanoItaly

Personalised recommendations