LES of Subsonic Reacting Mixing Layers

  • Anand KarthaEmail author
  • Pramod K. Subbareddy
  • Graham V. Candler


We study a class of chemically reacting, spatially evolving, subsonic mixing layers via large eddy simulations (LES). A primary goal is to assess the inflow conditions, numerical methods, and physical models requirement to reproduce experimental results on molecular mixing and effects of inflow conditions in high-Reynolds number mixing layers: here, we target experiments performed by Slessor et al. (J. Fluid Mech. 376, 115–138 1998). The streams forming the mixing layer carry small amounts of hydrogen and fluorine, initiating a hypergolic reaction upon mixing at large Damköhler number. In this regime, product formation and temperature rise in the flow is mixing limited. The chemical compositions considered for this study correspond to low levels of heat release and results in adiabatic flame temperature rise of 171K and 267K. Both reacting and non-reacting simulations are performed with the Vreman sub-grid scale model (Vreman Phys. Fluids 16(10), 3670–3681 2004). A grid resolution study is done and comparisons are made with the available experimental data. To mitigate dispersive errors and ensure boundedness in species mass fractions that occur in simulations of non-premixed combustion, non-linear scaling limiters are used for reconstructing species densities during flux evaluation. The simulations show good agreement of the velocity and temperature rise profiles with experiment, and reveal differences in the flow field attributed to changes in the inflow conditions.


Combustion Inflow conditions Scalar boundedness 



We would like to thank the reviewers for their constructive comments and suggestions that helped to improve the manuscript. We would also like to thank Prof. Paul E. Dimotakis, Drs. Pietro Ferrero and Jefferey Komives for constructive discussions during the work.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Slessor, M., Bond, C., Dimotakis, P.: Turbulent shear-layer mixing at high Reynolds numbers: Effects of inflow conditions. J. Fluid Mech. 376, 115–138 (1998)zbMATHCrossRefGoogle Scholar
  2. 2.
    Vreman, A.: An eddy-viscosity subgrid-scale model for turbulent shear flow: Algebraic theory and applications. Phys. Fluids 16(10), 3670–3681 (2004)zbMATHCrossRefGoogle Scholar
  3. 3.
    Koochesfahani, M., Dimotakis, P.: Mixing and chemical reactions in a turbulent liquid mixing layer. J. Fluid Mech. 170, 83–112 (1986)CrossRefGoogle Scholar
  4. 4.
    Clemens, N., Mungal, M.: Large-scale structure and entrainment in the supersonic mixing layer. J. Fluid Mech. 284, 171–216 (1995)CrossRefGoogle Scholar
  5. 5.
    Clemens, N., Paul, P.: Scalar measurements in compressible axisymmetric mixing layers. Phys. Fluids 7(5), 1071–1081 (1995)CrossRefGoogle Scholar
  6. 6.
    Island, T.C.: Quantitative Scalar Measurements and Mixing Enhancement in Compressible Shear Layers. Ph.D. thesis, Stanford University (1997)Google Scholar
  7. 7.
    Winant, C.D., Browand, F.K.: Vortex pairing: The mechanism of turbulent mixing-layer growth at moderate Reynolds number. J. Fluid Mech. 63(02), 237–255 (1974)CrossRefGoogle Scholar
  8. 8.
    Brown, G.L., Roshko, A.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. 64(04), 775–816 (1974)zbMATHCrossRefGoogle Scholar
  9. 9.
    Roshko, A.: Structure of turbulent shear flows: A new look. AIAA J. 14(10), 1349–1357 (1976)CrossRefGoogle Scholar
  10. 10.
    Dimotakis, P.E., Brown, P.: The mixing layer at high Reynolds number- large-structure dynamics and entrainment. J. Fluid Mech. 78(3), 535–560 (1976)CrossRefGoogle Scholar
  11. 11.
    Hernan, M.A., Jimenez, J.: Computer analysis of a high-speed film of the plane turbulent mixing layer. J. Fluid Mech. 119, 323–345 (1982)CrossRefGoogle Scholar
  12. 12.
    Konrad, J.H.: An experimental investigation of mixing in two-dimensional turbulent shear flows with applications to diffusion-limited chemical reactions, Ph.D. thesis, California Institute of Technology (1977)Google Scholar
  13. 13.
    Breidenthal, R.: Structure in turbulent mixing layers and wakes using a chemical reaction. J. Fluid Mech. 109, 1–24 (1981)CrossRefGoogle Scholar
  14. 14.
    Bernal, L., Roshko, A.: Streamwise vortex structure in plane mixing layers. J. Fluid Mech. 170, 499–525 (1986)CrossRefGoogle Scholar
  15. 15.
    Liepmann, D., Gharib, M.: The role of streamwise vorticity in the near-field entrainment of round jets. J. Fluid Mech. 245, 643–668 (1992)CrossRefGoogle Scholar
  16. 16.
    Clemens, N., Mungal, M.: Two-and three-dimensional effects in the supersonic mixing layer. AIAA J. 30(4), 973–981 (1992)CrossRefGoogle Scholar
  17. 17.
    Samimy, M., Reeder, M., Elliott, G.: Compressibility effects on large structures in free shear flows. Phys. Fluids A: Fluid Dyn. 4, 1251 (1992)CrossRefGoogle Scholar
  18. 18.
    Elliott, G.S., Samimy, M., Arnette, S.A.: Study of compressible mixing layers using filtered rayleigh scattering based visualizations. AIAA J. 30(10), 2567–2569 (1992)CrossRefGoogle Scholar
  19. 19.
    Dimotakis, P.E.: Two-dimensional shear-layer entrainment. AIAA J. 24(11), 1791–1796 (1986)CrossRefGoogle Scholar
  20. 20.
    Koochesfahani, M., Dimotakis, P., Broadwell, J.: A’flip’experiment in a chemically reacting turbulent mixing layer. AIAA J. 23(8), 1191–1194 (1985)CrossRefGoogle Scholar
  21. 21.
    Mungal, M., Dimotakis, P.: Mixing and combustion with low heat release in a turbulent shear layer. J. Fluid Mech. 148, 349–382 (1984)CrossRefGoogle Scholar
  22. 22.
    Broadwell, J.E., Mungal, M.G.: Large-scale structures and molecular mixing. Phys. Fluids A: Fluid Dyn. 3(5), 1193–1206 (1991)CrossRefGoogle Scholar
  23. 23.
    Hermanson, J., Dimotakis, P.: Effects of heat release in a turbulent, reacting shear layer. J. Fluid Mech. 199, 333–375 (1989)CrossRefGoogle Scholar
  24. 24.
    Hall, J.L.: An experimental investigation of structure, mixing and combustion in compressible turbulent shear layers, Ph.D. thesis, California Institute of Technology (1991)Google Scholar
  25. 25.
    Dimotakis, P.: Turbulent free shear layer mixing and combustion. Prog. Astronaut. Aeronaut. 137, 265–340 (1991)Google Scholar
  26. 26.
    Day, M., Mansour, N., Reynolds, W.: Nonlinear stability and structure of compressible reacting mixing layers. J. Fluid Mech. 446, 375–408 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    Miller, M., Bowman, C., Mungal, M.: An experimental investigation of the effects of compressibility on a turbulent reacting mixing layer. J. Fluid Mech. 356, 25–64 (1998)CrossRefGoogle Scholar
  28. 28.
    Ferrer, P.J.M., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers i.: Growth rates and turbulence characteristics. Combust. Flame 180, 284–303 (2017)CrossRefGoogle Scholar
  29. 29.
    Bradshaw, P.: The effect of initial conditions on the development of a free shear layer. J. Fluid Mech. 26(02), 225–236 (1966)CrossRefGoogle Scholar
  30. 30.
    Chandrsuda, C., Mehta, R.D., Weir, A., Bradshaw, P.: Effect of free-stream turbulence on large structure in turbulent mixing layers. J. Fluid Mech. 85(4), 693–704 (1978)CrossRefGoogle Scholar
  31. 31.
    Bell, J.H., Mehta, R.D.: Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28(12), 2034–2042 (1990)CrossRefGoogle Scholar
  32. 32.
    Goebel, S., Dutton, J., Krier, H., Renie, J.: Mean and turbulent velocity measurements of supersonic mixing layers. Exp. Fluids 8(5), 263–272 (1990)CrossRefGoogle Scholar
  33. 33.
    Moser, R.D., Rogers, M.M.: The three-dimensional evolution of a plane mixing layer: pairing and transition to turbulence. J. Fluid Mech. 247(1), 275 (1993)zbMATHCrossRefGoogle Scholar
  34. 34.
    Rogers, M.M., Moser, R.D.: Direct simulation of a self-similar turbulent mixing layer. Phys. Fluids (1994-present) 6(2), 903–923 (1994)zbMATHCrossRefGoogle Scholar
  35. 35.
    Sandham, N., Reynolds, W.: Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224(1), 133–158 (1991)zbMATHCrossRefGoogle Scholar
  36. 36.
    Luo, K., Sandham, N.: On the formation of small scales in a compressible mixing layer. In: Direct and Large-Eddy Simulation I, pp 335–346. Springer (1994)Google Scholar
  37. 37.
    Sarkar, S.: The stabilizing effect of compressibility in turbulent shear flow. J. Fluid Mech. 282, 163–186 (1995)zbMATHCrossRefGoogle Scholar
  38. 38.
    Freund, J.B., Lele, S.K., Moin, P.: Compressibility effects in a turbulent annular mixing layer. Part 1. Turbulence and growth rate. J. Fluid Mech. 421, 229–267 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Pantano, C., Sarkar, S.: A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451(1), 329–371 (2002)zbMATHCrossRefGoogle Scholar
  40. 40.
    Pantano, C., Sarkar, S., Williams, F.: Mixing of a conserved scalar in a turbulent reacting shear layer. J. Fluid Mech. 481, 291–328 (2003)zbMATHCrossRefGoogle Scholar
  41. 41.
    Sharma, R.B., Lele, S.: Large-eddy simulation of supersonic, turbulent mixing layers downstream of a splitter plate. In: 49th Aerospace Sciences Meeting and Exhibit, Orlando, Florida, AIAA Paper 2011–208 (2011)Google Scholar
  42. 42.
    McMullan, W.A.: Spanwise domain effects on the evolution of the plane turbulent mixing layer. Int. J. Comput. Fluid Dyn. 29(6-8), 333–345 (2015)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Dimotakis, P.E.: Turbulent mixing. Annu. Rev. Fluid Mech. 37, 329–356 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  44. 44.
    McMullan, W.A., Gao, S., Coats, C.M.: Organised large structure in the post-transition mixing layer. Part 2. Large-Eddy simulation. J. Fluid Mech. 762, 302–343 (2015)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Delarue, B., Pope, S.: Calculations of subsonic and supersonic turbulent reacting mixing layers using probability density function methods. Phys. Fluids 10, 487 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Sheikhi, M., Givi, P., Pope, S.: Velocity-scalar filtered mass density function for Large Eddy simulation of turbulent reacting flows. Phys. Fluids 19(9), 095106 (2007)zbMATHCrossRefGoogle Scholar
  47. 47.
    Ferrer, P.J.M., Lehnasch, G., Mura, A.: Compressibility and heat release effects in high-speed reactive mixing layers ii. Structure of the stabilization zone and modeling issues relevant to turbulent combustion in supersonic flows. Combust. Flame 180, 304–320 (2017)CrossRefGoogle Scholar
  48. 48.
    Ferrero, P., Kartha, A., Subbareddy, P.K., Candler, G.V., Dimotakis, P.E.: LES of a high-reynolds number, chemically reacting mixing layer, AIAA PaperGoogle Scholar
  49. 49.
    Ferrero, P.: A Stochastic Particle Method for the Investigation of Turbulence/Chemistry Interactions in Large-Eddy Simulations of Turbulent Reacting Flows. Ph.D. thesis, University of Minnesota (2013)Google Scholar
  50. 50.
    Matheou, G., Dimotakis, P.E.: Scalar excursions in Large-Eddy simulations. J. Comput. Phys. 327, 97–120 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Subbareddy, P.K., Kartha, A., Candler, G.V.: Scalar conservation and boundedness in simulations of compressible flow. J. Comput. Phys. 348, 827–846 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  52. 52.
    Kartha, C.A.V.: LES of High-Re Reacting Flows: Active Scalar Conservation and Boundedness. Ph.D. thesis, University of Minnesota (2018)Google Scholar
  53. 53.
    Martin, M.P., Piomelli, U., Candler, G.V.: Subgrid-scale models for compressible large-eddy simulations. Theor. Comput. Fluid Dyn. 13(5), 361–376 (2000)zbMATHGoogle Scholar
  54. 54.
    Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)CrossRefGoogle Scholar
  55. 55.
    Candler, G.V., Johnson, H.B., Nompelis, I., Gidzak, V.M., Subbareddy, P.K., Barnhardt, M.: Development of the us3d code for advanced compressible and reacting flow simulations. In: 53rd AIAA Aerospace Sciences Meeting, p. 1893 (2015)Google Scholar
  56. 56.
    Subbareddy, P.K., Candler, G.V., fully discrete, A: kinetic energy consistent finite-volume scheme for compressible flows. J. Comput. Phys. 228(5), 1347–1364 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  57. 57.
    Bartkowicz, M.D., Subbareddy, P.K., Candler, G.V.: Numerical simulations of roughness induced instability in the purdue mach 6 wind tunnel, AIAA paper 4723Google Scholar
  58. 58.
    Ducros, F., Ferrand, V., Nicoud, F., Weber, C., Darracq, D., Gacherieu, C., Poinsot, T.: Large-eddy simulation of the shock/turbulence interaction. J. Comput. Phys. 152(2), 517–549 (1999)zbMATHCrossRefGoogle Scholar
  59. 59.
    Mavriplis, D.J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA paper 3986 (2003)Google Scholar
  60. 60.
    Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Kaps, P., Rentrop, P.: Generalized Runge-Kutta methods of order four with stepsize control for stiff ordinary differential equations. Numer. Math. 33(1), 55–68 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Strang, G.: On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5(3), 506–517 (1968)MathSciNetzbMATHCrossRefGoogle Scholar
  63. 63.
    Sportisse, B.: An analysis of operator splitting techniques in the stiff case. J. Comput. Phys. 161(1), 140–168 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Mungal, M., Frieler, C.: The effects of Damköhler number in a turbulent shear layer. Combust. Flame 71(1), 23–34 (1988)CrossRefGoogle Scholar
  65. 65.
    Pitsch, H.: Large-eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  66. 66.
    Fureby, C.: LES for supersonic combustion. AIAA Paper 5979 (2012)Google Scholar
  67. 67.
    Magnussen, B.F.: The Eddy dissipation concept—a bridge between science and technology. In: ECCOMAS Thematic Conference on Computational Combustion, pp. 21–24 (2005)Google Scholar
  68. 68.
    Sabelnikov, V., Fureby, C.: LES combustion modeling for high re flames using a multi-phase analogy. Combust. Flame 160(1), 83–96 (2013)CrossRefGoogle Scholar
  69. 69.
    Moule, Y., Sabelnikov, V., Mura, A.: Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets. Combust. Flame 161(10), 2647–2668 (2014)CrossRefGoogle Scholar
  70. 70.
    Fulton, J.A., Edwards, J.R., Cutler, A.D., McDaniel, J.C., Goyne, C.P.: Turbulence/chemistry interactions in a ramp-stabilized supersonic hydrogen-air diffusion flame. In: 52nd Aerospace Sciences Meeting, p. 0627 (2014)Google Scholar
  71. 71.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or Large Eddy simulations. J. Comput. Phys. 186(2), 652–665 (2003)zbMATHCrossRefGoogle Scholar
  72. 72.
    Xie, Z.-T., Castro, I.P.: Efficient generation of inflow conditions for large eddy simulation of street-scale flows. Flow Turbul. Combust. 81(3), 449–470 (2008)zbMATHCrossRefGoogle Scholar
  73. 73.
    Touber, E., Sandham, N.D.: Large-Eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theor. Comput. Fluid Dyn. 23(2), 79–107 (2009)zbMATHCrossRefGoogle Scholar
  74. 74.
    Pirozzoli, S., Bernardini, M.: Turbulence in supersonic boundary layers at moderate Reynolds number. J. Fluid Mech. 688, 120–168 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  75. 75.
    Bonanos, A.M., Bergthorson, J.M., Dimotakis, P.E.: Mixing measurements in a supersonic expansion-ramp combustor. Flow Turbul. Combust. 80(4), 489–506 (2008)CrossRefGoogle Scholar
  76. 76.
    Poinsot, T.J., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  77. 77.
    Baum, M., Poinsot, T., Thévenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 116(2), 247–261 (1995)zbMATHCrossRefGoogle Scholar
  78. 78.
    Bond, C.L.: Reynolds Number Effects on Mixing in the Turbulent Shear Layer, Ph.D. thesis, California Institute of Technology (1999)Google Scholar
  79. 79.
    Corcos, G., Lin, S.: The mixing layer: Deterministic models of a turbulent flow. Part 2. The origin of the three-dimensional motion. J. Fluid Mech. 139, 67–95 (1984)zbMATHCrossRefGoogle Scholar
  80. 80.
    D’Ovidio, A., Coats, C.: Organized large structure in the post-transition mixing layer. Part 1. Experimental evidence. J. Fluid Mech. 737, 466–498 (2013)zbMATHCrossRefGoogle Scholar
  81. 81.
    Pickett, L.M., Ghandhi, J.B.: Passive scalar mixing in a planar shear layer with laminar and turbulent inlet conditions. Phys. Fluids 14(3), 985–998 (2002)CrossRefGoogle Scholar
  82. 82.
    Dimotakis, P.E., Miller, P.L.: Some consequences of the boundedness of scalar fluctuations. Phys.of Fluids A: Fluid Dyn. 2(11), 1919–1920 (1990)zbMATHCrossRefGoogle Scholar
  83. 83.
    Huang, L.-S., Ho, C.-M.: Small-scale transition in a plane mixing layer. J. Fluid Mech. 210, 475–500 (1990)CrossRefGoogle Scholar
  84. 84.
    Masutani, S., Bowman, C.: The structure of a chemically reacting plane mixing layer. J. Fluid Mech. 172, 93–126 (1986)CrossRefGoogle Scholar
  85. 85.
    Matheou, G., Bonanos, A.M., Pantano, C., Dimotakis, P.E.: Large-eddy simulation of mixing in a recirculating shear flow. J. Fluid Mech. 646, 375–414 (2010)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Aerospace Engineering and MechanicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Altair EngineeringSunnyvaleUSA
  3. 3.Mechanical and Aerospace EngineeringNorth Carolina State UniversityRaleighUSA

Personalised recommendations