Flow, Turbulence and Combustion

, Volume 103, Issue 4, pp 871–885 | Cite as

High-Speed Imaging of Turbulent Nonpremixed Syngas Flames at Elevated Pressures

  • Wesley R. BoyetteEmail author
  • Thibault F. Guiberti
  • Ayman M. Elbaz
  • William L. Roberts


To address the paucity of experimental data on well-documented turbulent jet flames at elevated pressures, a high pressure rig has been used to explore turbulent nonpremixed syngas flames at elevated pressures and very high Reynolds numbers. Composite images of the flames reveal small changes in flame length that are in agreement with previous empirical correlations. OH-PLIF images are used to visualize the flame structure, revealing an OH layer that gets progressively thinner as pressure increases. A corrugation factor is defined and used to show that flame front corrugation is influenced by increases in Reynolds number and axial distance from the nozzle, but not pressure.


High pressure Turbulent nonpremixed flames Syngas 



The research reported in this publication was supported by funding from King Abdullah University of Science and Technology (KAUST).


This study was funded by King Abdullah University of Science and Technology (no grant number).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Bilger, R.W.: Turbulent jet diffusion flames. Prog. Energy Combust. Sci. 1, 87–109 (1976)Google Scholar
  2. 2.
    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)Google Scholar
  3. 3.
    Oefelein, J.C., Schefer, R.W., Barlow, R.S.: Toward validation of Large Eddy Simulation for turbulent combustion. AIAA J. 44(3), 418–433 (2006)Google Scholar
  4. 4.
    Bray, K.N.C.: The challenge of turbulent combustion. Symp. (Int.) Combust. 26, 1–26 (1996)Google Scholar
  5. 5.
    Bilger, R.W., Pope, S.B., Bray, K.N.C., Driscoll, J.F.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30, 21–42 (2005)Google Scholar
  6. 6.
    Pitsch, H., Steiner, H.: Large-eddy simulation of a turbulent piloted methane/air diffusion flame (Sandia flame D). Phys. Fluids 12(10), 2541–2554 (2000)zbMATHGoogle Scholar
  7. 7.
    Strahle, W.C.: Preface to “Evaluation of data on simple turbulent reacting flows”. Prog. Energy Combust. Sci. 12, 253–255 (1986)Google Scholar
  8. 8.
    Faeth, G.M., Samuelsen, G.S.: Fast reaction nonpremixed combustion. Prog. Energy Combust. Sci. 12, 305–372 (1986)Google Scholar
  9. 9.
    Drake, M.C., Kollmann, W.: Slow chemistry nonpremixed flows. Prog. Energy Combust. Sci. 12, 373–392 (1986)Google Scholar
  10. 10.
    Masri, A.R., Dibble, R.W., Barlow, R.S.: The structure of turbulent nonpremixed flames revealed by Raman-Rayleigh-LIF measurements. Prog. Energy Combust. Sci. 22, 307–362 (1996)Google Scholar
  11. 11.
    Pope, S.B.: Computations of turbulent combustion: progress and challenges. Symp. (Int.) Combust. 23, 591–612 (1990)Google Scholar
  12. 12.
    TNF workshop - International workshop on measurement and computation of turbulent nonpremixed flames.
  13. 13.
    Barlow, R.S., Carter, C.D.: Relationships among nitric oxide, temperature, and mixture fraction in hydrogen jet flames. Combust. Flame 104, 288–299 (1996)Google Scholar
  14. 14.
    Barlow, R.S., Fiechtner, G.J., Carter, C.D., Chen, J.-Y.: Experiments on the scalar structure of turbulent CO/H2/N2 jet flames. Combust. Flame 120, 549–569 (2000)Google Scholar
  15. 15.
    Meier, W., Barlow, R.S., Chen, Y.-L., Chen, J.-Y.: Raman/Rayleigh/LIF measurements in a turbulent CH4/H2/N2 jet diffusion flame: experimental techniques and turbulence-chemistry interaction. Combust. Flame 123, 326–343 (2000)Google Scholar
  16. 16.
    Rankin, B.A., Magnotti, G., Barlow, R.S., Gore, J.P.: Radiation intensity imaging measurements of methane and dimethyl ether turbulent nonpremixed and partially premixed jet flames. Combust. Flame 161, 2849–2859 (2014)Google Scholar
  17. 17.
    Frank, J.H., Barlow, R.S., Lundquist, C.: Radiation and nitric oxide formation in turbulent non-premixed jet flames. Proc. Combust. Inst. 28, 447–454 (2000)Google Scholar
  18. 18.
    Dally, B.B., Fletcher, D.F., Masri, A.R.: Flow and mixing fields of turbulent bluff-body jets and flames. Combust. Theory Model. 2, 193–219 (1998)zbMATHGoogle Scholar
  19. 19.
    Stahler, T., Geyer, D., Magnotti, G., Trunk, P., Dunn, M.J., Barlow, R.S., Dreizler, A.: Multiple conditioned analysis of the turbulent stratified flame A. Proc. Combust. Inst. 36, 1947–1955 (2017)Google Scholar
  20. 20.
    Sweeney, M.S., Hochgreb, S., Dunn, M.J., Barlow, R.S.: The structure of turbulent stratified and premixed methane/air flames II: swirling flows. Combust. Flame 159, 2912–2929 (2012)Google Scholar
  21. 21.
    Barlow, R.S., Meares, S., Magnotti, G., Cutcher, H., Masri, A. R.: Local extinction and near-field structure in piloted turbulent CH4/air jet flames with inhomogeneous inlets. Combust. Flame 162, 3516–3540 (2015)Google Scholar
  22. 22.
    Flower, W.L.: An investigation of soot formation in axisymmetric turbulent diffusion flames at elevated pressure. Symp. (Int.) Combust. 22, 425–435 (1988)Google Scholar
  23. 23.
    Young, K.J., Stewart, C.D., Moss, J.B.: Soot formation in turbulent nonpremixed kerosine-air flames burning at elevated pressure: experimental measurement. Symp. (Int.) Combust. 25, 609–617 (1994)Google Scholar
  24. 24.
    Fischer, B.A., Moss, J.B.: The influence of pressure on soot production and radiation in turbulent kerosine spray flames. Combust. Sci. Technol. 138, 43–61 (1998)Google Scholar
  25. 25.
    Brookes, S.J., Moss, J.B.: Measurements of soot production and thermal radiation from confined turbulent jet diffusion flames of methane. Combust. Flame 116, 49–61 (1999)Google Scholar
  26. 26.
    Clemens, N.T., Paul, P.H., Mungal, M.G.: The structure of OH fields in high Reynolds number turbulent jet diffusion flames. Combust. Sci. Technol. 129, 165–184 (1997)Google Scholar
  27. 27.
    Barlow, R.S.: Laser diagnostics and their interplay with computations to understand turbulent combustion. Proc. Combust. Inst. 31, 49–75 (2007)Google Scholar
  28. 28.
    Hawthorne, W.R., Weddell, D.S., Hottel, H.C.: Mixing and combustion in turbulent gas jets. In: 3rd Symposium on Combustion Flame and Explosion Phenomena, pp 266–288 (1949)Google Scholar
  29. 29.
    Becker, H.A., Liang, D.: Visible length of vertical free turbulent diffusion flames. Combust. Flame 32, 115–137 (1978)Google Scholar
  30. 30.
    Kalghatgi, G.T.: Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 17–29 (1984)Google Scholar
  31. 31.
    Delichatsios, M.A.: Transition from momentum to buoyancy-controlled turbulent jet diffusion flames and flame height relationships. Combust. Flame 92, 349–364 (1993)Google Scholar
  32. 32.
    Hwang, J, Sohn, K, Bouvet, N, Yoon, Y: NOx scaling of Syngas H2/CO turbulent non-premixed jet flames. Combust. Sci. Technol. 185(12), 1715–1734 (2013)Google Scholar
  33. 33.
    Hu, L, Wang, Q, Delichatsios, M, Tang, F, Zhang, X, Lu, S: Flame height and lift-off of turbulent buoyant jet diffusion flames in a reduced pressure atmosphere. Fuel 109, 234–240 (2013)Google Scholar
  34. 34.
    Seitzman, J.M., Üngüt, A., Paul, P.H., Hanson, R.K.: Imaging and characterization of OH structures in a turbulent nonpremixed flame. Symp. (Int.) Combust. 23, 637–644 (1990)Google Scholar
  35. 35.
    Kothnur, P.S., Tsurikov, M. S., Clemens, N. T., Donbar, J. M., Carter, C. D.: Planar imaging of CH, OH, and velocity in turbulent non-premixed jet flames. Proc. Combust. Inst. 29, 1921–1927 (2002)Google Scholar
  36. 36.
    Gordon, R.L., Masri, A.R., Mastorakos, E.: Heat release rate as represented by [OH]×[CH2O] and its role in autoignition. Combust. Theory Model. 13(4), 645–670 (2009)Google Scholar
  37. 37.
    Chi, C, Janiga, G, Abdelsamie, A, Zähringer, K, Turányi, T, Thévenin, D: DNS study of the optimal chemical markers for heat release in Syngas flames. Flow Turbul. Combust. 98, 1117–1132 (2017)Google Scholar
  38. 38.
    Boyette, W.R., Elbaz, A.M., Guiberti, T.F., Roberts, W.L.: Experimental investigation of the near field in sooting turbulent nonpremixed flames at elevated pressures. Exp. Therm. Fluid Sci. 105, 332–341 (2019)Google Scholar
  39. 39.
  40. 40.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)Google Scholar
  41. 41.
    Bayley, A.E., Hardalupas, Y., Taylor, A.M. K. P.: Local curvature measurements of a lean, partially premixed swirl-stabilised flame. Exp. Fluids 52, 963–983 (2012)Google Scholar
  42. 42.
    Coriton, B., Zendehdel, M., Ukai, S., Kronenburg, A., Stein, O.T., Im, S.K., Gamba, M., Frank, J.H.: Imaging measurements and LES-CMC modeling of a partially-premixed turbulent dimethyl ether/air jet flame. Proc. Combust. Inst. 35, 1251–1258 (2015)Google Scholar
  43. 43.
    Matynia, A., Molet, J., Roche, C., Idir, M., de Persis, S., Pillier, L.: Measurement of OH concentration profiles by laser diagnostics and modeling in high-pressure counterflow premixed methane/air and biogas/air flames. Combust. Flame 159(11), 3300–3311 (2012)Google Scholar
  44. 44.
    Takagi, T., Shin, H., Ishio, A.: Local laminarization in turbulent diffusion flames. Combust. Flame 37(2), 163–170 (1980)Google Scholar
  45. 45.
    Kaiser, S.A., Frank, J.H.: Spatial scales of extinction and dissipation in the near field of non-premixed turbulent jet flames. Proc. Combust. Inst. 32, 1639–1646 (2009)Google Scholar
  46. 46.
    Prasad, V.N., Juddoo, M., Masri, A. R., Jones, W. P., Luo, K.H.: Investigation of extinction and re-ignition in piloted turbulent non-premixed methane–air flames using LES and high-speed OH-LIF. Combust. Theory Model. 17(3), 483–503 (2013)MathSciNetGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.King Abdullah University of Science and Technology (KAUST), CCRCThuwalSaudi Arabia

Personalised recommendations