Flow, Turbulence and Combustion

, Volume 103, Issue 3, pp 699–730 | Cite as

Large Eddy Simulation of Combustion and Heat Transfer in a Single Element GCH4/GOx Rocket Combustor

  • D. MaestroEmail author
  • B. Cuenot
  • L. Selle
Original research


The single element GCH4/GOx rocket combustion chamber developed at the Technische Universität München has been computed using Large Eddy Simulation. The aim of this work is to analyze the flow and combustion features at high pressure, with a particular focus on the prediction of wall heat flux, a key point for the development of reusable engines. The impact of the flow and flame, as well as of the model used, on thermal loads is investigated. Longitudinal distribution of wall heat flux, as well as chamber pressure, have been plotted against experimental data, showing a good agreement. The link between the heat released by the flame, the heat losses and the chamber pressure has been explained by performing an energetic balance of the combustion chamber. A thermally chained numerical simulation of the combustor structure has been used to validate the hypothesis used in the LES.


Large-eddy simulation GCH4/GOx combustion Wall heat transfer Rocket propulsion 



The authors acknowledge CINES (Centre Informatique National de l’Enseignement Supérieur) of GENCI (Grand Équipement National de Calcul Intensif) for giving access to HPC resources under the allocations A0032B10157 and A0012B07036. The authors extend special thanks to Mariella Celano, Simona Silvestri, Christoph Kirchberger, Gregor Schlieben and Oskar Haidn for providing the test case and insightful discussions.


This work has been funded by CERFACS in the context of D. Maestro PhD work. The numerical simulations presented in the paper have been performed using HPC resources provided by CINES of GENCI under the allocations A0032B10157 and A0012B07036.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Burkhardt, H., Sippel, M., Herbertz, A., Klevanski, J.: Kerosene vs methane: a propellant tradeoff for reusable liquid booster stages. J. Spacecr. Rocket. 41(5), 762–769 (2004)CrossRefGoogle Scholar
  2. 2.
    Preclik, D., Hagemann, G., Knab, O., Mading, C., Haeseler, D., Haidn, O.J., Woschnak, A., DeRosa, M.: LOX-hydrocarbon preparatory thrust chamber technology activities in Germany. In: 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit (2005)Google Scholar
  3. 3.
    Liang, K., Yang, B., Zhang, Z.: Investigation of heat transfer and coking characteristics of hydrocarbon fuels. J. Propul. Power 14(5) (1998)Google Scholar
  4. 4.
    Fröhlich, A., Popp, M., Schmidt, G., Thelemann, D.: Heat transfer characteristics of H2/O2-combustion chambers. In: Joint Propulsion Conference and Exhibit (1993)Google Scholar
  5. 5.
    Vingert, L., Habiballah, M., Vuillermoz, P.: Upgrading of the Mascotte cryogenic test bench to the LOX/Methane combustion studies. In: 4th International Conference on Launcher Technology “Space Launcher Liquid Propulsion”, Liège, Belgium, p. 77 (2002)Google Scholar
  6. 6.
    Cuoco, F., Yang, B., Oschwald, M.: Experimental investigation of LOX/H2 and LOX/CH4 sprays and flames. In: 24th International Symposium on Space Technology and Science (2004)Google Scholar
  7. 7.
    Celano, M. P., Silvestri, S., Schlieben, G., Kirchberger, C., Haidn, O. J., Dawson, T., Ranjan, R., Menon, S.: Experimental and numerical investigation of GOX-GCH4 shear-coaxial injector element. In: SP-2014-2969417 (2014)Google Scholar
  8. 8.
    Roth, C., Haidn, O., Riedmann, H., Ivancic, B., Maestro, D., Cuenot, B., Selle, L., Daimon, Y., Chemnitz, A., Keller, R., et al.: Comparison of different modeling approaches for CFD simulations of a single-element GCH4/GOX rocket combustor. Proceedings of the 2015 Summer Program (2015)Google Scholar
  9. 9.
    Maestro, D., Selle, L., Cuenot, B.: Thermally chained LES of a GCH4/GOX single element combustion chamber. Proceedings of the 2015 Summer Program (2015)Google Scholar
  10. 10.
    Roth, C., Haidn, O., Chemnitz, A., Sattelmayer, T., Frank, G., Müller, H., Zips, J., Keller, R., Gerlinger, P., Maestro, D., Selle, L., Cuenot, B., Riedmann, H.: Numerical investigation of flow and combustion in a single element GCH4/Gox rocket combustor. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)Google Scholar
  11. 11.
    Maestro, D., Cuenot, B., Chemnitz, A., Sattelmayer, T., Roth, C., Haidn, O., Daimon, Y., Keller, R., Gerlinger, P. M., Frank, G., et al.: Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: Chemistry modeling and turbulence-combustion interaction. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)Google Scholar
  12. 12.
    Müller, H., Zips, J., Pfitzner, M., Maestro, D., Cuenot, B., Menon, S., Ranjan, R., Tudisco, P., Selle, L.: Numerical investigation of flow and combustion in a single-element GCH4/GOX rocket combustor: A comparative LES study. In: 52nd AIAA/SAE/ASEE Joint Propulsion Conference (2016)Google Scholar
  13. 13.
    Maestro, D., Cuenot, B., Selle, L.: Large Eddy Simulation of flow and combustion in a single-element GCH4/GOX rocket combustor. In: 7th European Conference for Aeronautics and Space Sciences (EUCASS) (2017)Google Scholar
  14. 14.
    Celano, M. P., Silvestri, S., Schlieben, G., Kirchberger, C., Haidn, O.J.: Injector characterization for a GOX-GCH4 single element combustion chamber. In: 5th European Conference for Aeronautics and Space Sciences (EUCASS) (2013)Google Scholar
  15. 15.
    Celano, M., Silvestri, S., Pauw, J., Perakis, N., Schily, F., Suslov, D., Haidn, O.J.: Heat flux evaluation methods for a single element heat-sink chamber. In: 6th European Conference of Aeronautics and Space Science, Krakow, Poland (2015)Google Scholar
  16. 16.
    Sankaran, R., Hawkes, E., Chen, J., Lu, T., Law, C.: Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proc. Combust. Inst. 31(1), 1291–1298 (2007)CrossRefGoogle Scholar
  17. 17.
    Lu, T., Law, C.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRefGoogle Scholar
  18. 18.
    Lu, T., Ju, Y., Law, C.: Complex cap for chemistry reduction and analysis. Combust. Flame 126(1), 1445–1455 (2001)CrossRefGoogle Scholar
  19. 19.
    Frenklach, M., Wang, H., Goldenberg, M., Smith, G., Golden, D.: GRI-MECH: An optimized detailed chemical reaction mechanism for methane combustion. Topical report, September 1992-August 1995. Tech. rep., SRI International, Menlo Park, CA (United States) (1995)Google Scholar
  20. 20.
    Mari, R.: Influence of heat transfer on high pressure flame structure and stabilization in liquid rocket engines. Ph.D thesis (2015)Google Scholar
  21. 21.
    Goodwin, D., Moffat, H.K., Speth, R.: Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Caltech, Pasadena, CA (2009)Google Scholar
  22. 22.
    Bilger, R., Staarner, S., Kee, R.J.: On reduced mechanisms for methane–air combustion in nonpremixed flames. Combust. Flame 80(2), 135–149 (1990)CrossRefGoogle Scholar
  23. 23.
    Poinsot, T., Lele, S.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Daimon, Y., Terashimay, N.H., Haidn, O.: Combustion modeling study for a GCH4/GOX single element combustion chamber: Steady state simulation and validations. Proceedings of the 2015 Summer Program (2015)Google Scholar
  25. 25.
    Cabrit, O.: Modelisation des flux parietaux sur les tuyeres des moteurs a propergol solide. Ph.D. thesis (2009)Google Scholar
  26. 26.
    Kays, W.M., Crawford, M.E., Weigand, B.: Convective Heat and Mass Transfer. McGraw-Hill Inc., New York (2004)Google Scholar
  27. 27.
    Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1986)zbMATHGoogle Scholar
  28. 28.
    Schønfeld, T., Rudgyard, M.: Steady and unsteady flows simulations using the hybrid flow solver AVBP. AIAA J. 37(11), 1378–1385 (1999)CrossRefGoogle Scholar
  29. 29.
    Gourdain, N., Gicquel, L., Staffelbach, G., Vermorel, O., Duchaine, F., Boussuge, J. F., Poinsot, T.: High performance parallel computing of flows in complex geometries - part 2: applications. Comput. Sci. Disc. 2(1), 28pp (2009)Google Scholar
  30. 30.
    Lax, P.D., Wendroff, B.: Systems of conservation laws. Commun. Pure Appl. Math. 13, 217–237 (1960)zbMATHCrossRefGoogle Scholar
  31. 31.
    Nicoud, F., Baya Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085106 (2011)CrossRefGoogle Scholar
  32. 32.
    Chapman, S., Cowling, T.G.: The Mathematical Theory of Non-Uniform Gases: An Account of the Kinetic Theory of Viscosity Thermal Conduction and Diffusion in Gases. Cambridge University Press, Cambridge (1970)zbMATHGoogle Scholar
  33. 33.
    Wilke, C.R.: A viscosity equation for gas mixtures. J. Chem. Phys. 18(4), 517–519 (1950)CrossRefGoogle Scholar
  34. 34.
    Legier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame LES model for premixed and non-premixed turbulent combustion. In: Proceedings of the Summer Program, pp 157–168 (2000)Google Scholar
  35. 35.
    Shum-Kivan, F.: Simulation des Grandes Echelles de flammes de spray et modélisation de la combustion non-prémélangée. Ph.D. thesis, Institut National Polytechnique de Toulouse (2017)Google Scholar
  36. 36.
    Cuenot, B., Poinsot, T.: Effects of curvature and unsteadiness in diffusion flames. Implications for turbulent diffusion combustion. Direct Numerical Simulation for Turbulent Reacting Flows, p. 225 (1996)Google Scholar
  37. 37.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part i: Non-dynamic formulation and initial tests. Combust. Flame 131(1), 159–180 (2002)CrossRefGoogle Scholar
  38. 38.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)zbMATHCrossRefGoogle Scholar
  39. 39.
    Winter, F., Silvestri, S., Celano, M. P., Schlieben, G., Haidn, O.: High-speed and emission imaging of a coaxial single element GOX/GCH4 rocket combustion chamber. In: European Conference for Aeronautics and Space Sciences (2017)Google Scholar
  40. 40.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  41. 41.
    Rudgyard, M., Schönfeld, T., D’Ast, I.: A parallel library for CFD and other grid-based applications. In: International Conference on High-Performance Computing and Networking, pp 358–364. Springer (1996)Google Scholar
  42. 42.
    Potier, L.: Large Eddy Simulation of the combustion and heat transfer in sub-critical rocket engines. Ph.D. thesis, Institut National Polytechnique de Toulouse (2018)Google Scholar
  43. 43.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards Inc. (2012)Google Scholar
  44. 44.
    Duchaine, F., Mendez, S., Nicoud, F., Corpron, A., Moureau, V., Poinsot, T.: Conjugate heat transfer with large eddy simulation for gas turbine components. Comptes-rendus de l’Académie des sciences. Série IIb, Mécanique 337 (6-7), 550–561 (2009)Google Scholar
  45. 45.
    Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley (2003)Google Scholar
  46. 46.
    Frayssé, V., Giraud, L., Gratton, S., Langou, J.: A set of gmres routines for real and complex arithmetics. CERFACS, Toulouse Cedex, France, Tech. Rep. TR/PA/97/49, [Online]. Available: (1997)
  47. 47.
    Perakis, N., Celano, M.P., Haidn, O.J.: Heat flux and temperature evaluation in a rectangular multi-element GOX/GCH4 combustion chamber using an inverse heat conduction method.. In: 7th European Conference for Aerospace Sciences (2017)Google Scholar
  48. 48.
    Kirchberger, C., Schlieben, G., Haidn, O.J.: Assessment of film cooling characteristics in a GOX/Kerosene rocket combustion chamber. In: 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, p 4144 (2013)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CERFACSToulouse Cedex 01France
  2. 2.Institut de Mécanique des Fluides de Toulouse, IMFTUniversité de ToulouseToulouseFrance

Personalised recommendations