Advertisement

Flow, Turbulence and Combustion

, Volume 103, Issue 4, pp 913–941 | Cite as

Propagation of Spherically Expanding Turbulent Flames into Fuel Droplet-Mists

  • Gulcan Ozel ErolEmail author
  • Josef Hasslberger
  • Markus Klein
  • Nilanjan Chakraborty
SI: THMT-2018

Abstract

The effects of droplet diameter and the overall (liquid+gas) equivalence ratio on flame topology and propagation statistics in spherically expanding turbulent n-heptane spray flames have been analysed based on three-dimensional Direct Numerical Simulations (DNS) data. It has been found that the range of both mean and Gauss curvatures of the flame surface, and the probability of finding saddle topologies increase with increasing droplet diameter and overall equivalence ratio. The presence of droplets affects the displacement speed and consumption speed statistics principally through the reaction rate of the mixture composition in the reaction zone. The magnitudes of the components of density-weighted displacement speed arising from mixture inhomogeneity and droplet evaporation remain small in comparison to the magnitudes of the reaction rate and molecular diffusion rate components. The presence of large droplets decreases the mean density-weighted displacement speed \( {S}_d^{\ast } \) and increases the probability of finding negative \( {S}_d^{\ast } \) values, except for overall fuel-lean equivalence ratios. The mean consumption speed shows an increasing trend with increasing droplet diameter for fuel-lean overall equivalence ratios, whereas the mean consumption speed decreases with increasing droplet diameter for overall stoichiometric and fuel-rich mixtures. The mean consumption speed remains greater than the mean density-weighted displacement speed for all cases considered here. An alternative flame speed, which represents the growth rate of the flame surface area, has been found to provide an approximate measure of mean consumption flame speed. By contrast, an alternative flame speed, which represents the growth rate of burned gas volume, has been found to approximate the mean density-weighted displacement speed for large droplets in the case of stoichiometric and fuel-rich overall equivalence ratios.

Keywords

Droplet combustion Spherically expanding flame Displacement speed Consumption speed Direct numerical simulations 

Notes

Funding

The financial support of the Republic of Turkey Ministry of National Education and EPSRC (EP/K025163/1, EP/R029369/1) and the computational support of Rocket and ARCHER are gratefully acknowledged.

Compliance with Ethical Standards

This work did not involve any active collection of human data.

Competing Interests

We have no competing interests.

References

  1. 1.
    Hayashi, S., Kumarevgai, S., Sakai, T.: Propagation velocity and structure of flames in droplet-vapor-air mixtures. Combust. Sci. Technol. 15, 169–177 (1977)Google Scholar
  2. 2.
    Abdel-Gayed, R.G., Al-Khishali, K.J., Bradley, D.: Turbulent burning velocities and flame straining in explosions. Proc. R. Soc. Lond. A. 391(1801), 393–414 (1984)Google Scholar
  3. 3.
    Beretta, G.P., Rashidi, M., Keck, J.C.: Turbulent flame propagation and combustion in spark ignition engines. Combust. Flame. 52, 217–245 (1983)Google Scholar
  4. 4.
    Bradley, D., Gaskell, P.H., Gu, X.J.: Burning velocities, Markstein lengths,and flame quenching for spherical methane-air flames, A computational study. Combust. Flame. 104, 176–198 (1996)Google Scholar
  5. 5.
    Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame. 123, 507–521 (2000)Google Scholar
  6. 6.
    Nwagwe, I.K., Weller, H.G., Tabor, G.R., Gosman, A.D., Lawes, M., Sheppard, C.G.W., Wooley, R.: Measurements and large eddy simulations of turbulent premixed flame kernel growth. Proc. Combust. Inst. 28, 59–65 (2000)Google Scholar
  7. 7.
    Haq, M.Z., Sheppard, C.G.W., Woolley, R., Greenhalgh, D.A., Lockett, R.D.: Wrinkling and curvature of laminar and turbulent premixed flames. Combust. Flame. 131, 1–15 (2002)Google Scholar
  8. 8.
    Bradley, D., Haq, M.Z., Hicks, R.A., Kitagawa, T., Lawes, M., Sheppard, C.G.W., Woolley, R.: Turbulent burning velocity, burned gas distribution, and associated flame surface definition. Combust. Flame. 133, 415–430 (2003)Google Scholar
  9. 9.
    Gashi, S., Hult, J., Jenkins, K.W., Chakraborty, N., Cant, R.S., Kaminski, C.F.: Curvature and wrinkling of premixed flame kernels—comparisons of OH PLIF and DNS data. Proc. Combust. Inst. 30, 809–817 (2005)Google Scholar
  10. 10.
    Hult, J., Gashi, S., Chakraborty, N., Klein, M., Jenkins, K.W., Cant, R.S., Kaminski, C.F.: Measurement of flame surface density for turbulent premixed flames using PLIF and DNS. Proc. Combust. Inst. 31(I), 1319–1326 (2007)Google Scholar
  11. 11.
    Lawes, M., Saat, A.: Burning rates of turbulent iso-octane aerosol mixtures in spherical flame explosions. Proc. Combust. Inst. 33, 2047–2054 (2011)Google Scholar
  12. 12.
    Lawes, M., Ormsby, M.P., Sheppard, C.G.W., Woolley, R.: The turbulent burning velocity of iso-octane/air mixtures. Combust. Flame. 159, 1949–1959 (2012)Google Scholar
  13. 13.
    Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503–0441–5 (2012)Google Scholar
  14. 14.
    Akkerman, V., Chaudhuri, S., Law, C.K.: Accelerative propagation and explosion triggering by expanding turbulent premixed flames. Phys. Rev. E. 87(23008), (2013)Google Scholar
  15. 15.
    Brequigny, P., Endouard, C., Mounaïm-Rousselle, C., Foucher, F.: An experimental study on turbulent premixed expanding flames using simultaneously Schlieren and tomography techniques. Exp. Therm. Sci. 95, 11–17 (2018)Google Scholar
  16. 16.
    Thimothée, R., Chauveau, C., Halter, F. and Gökalp I., Characterization of cellular instabilities of a flame propagating in an aerosol, Proc. of ASME Turbo Expo 2015, GT2015–44022, Canada, (2015)Google Scholar
  17. 17.
    Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106, 19–39 (1995)Google Scholar
  18. 18.
    Poinsot, T., Candel, S., Trouve, A.: Applications of direct numerical simulation to premixed turbulent combustion. Prog. Energy Combust. Sci. 21, 531–576 (1995)Google Scholar
  19. 19.
    Schmid, H.-P., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame. 113, 79–91 (1998)Google Scholar
  20. 20.
    Jenkins, K.W., Cant, R.S.: Curvature effects on flame kernels in a turbulent environment. Proc. Combust. Inst. 29, 2023–2029 (2002)Google Scholar
  21. 21.
    Tabor, G., Weller, H.G.: Large eddy simulation of premixed turbulent combustion using flame surface wrinkling model. Flow Turbul. Combust. 72, 1–27 (2004)zbMATHGoogle Scholar
  22. 22.
    van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., de Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. Proc. Combust. Inst. 30, 657–664 (2005)Google Scholar
  23. 23.
    Thevenin, D.: Three-dimensional direct simulations and structure of expanding turbulent methane flames. Proc. Combust. Inst. 30, 629–637 (2005)Google Scholar
  24. 24.
    Klein, M., Chakraborty, N., Jenkins, K.W., Cant, R.S.: Effects of initial radius on the propagation of premixed flame kernels in a turbulent environment. Phys. Fluids. 18(5), 055102 (2006)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Jenkins, K.W., Klein, M., Chakraborty, N., Cant, R.S.: Effects of strain rate and curvature on the propagation of a spherical flame kernel in the thin-reactionzones regime. Combust. Flame. 145, 415–434 (2006)Google Scholar
  26. 26.
    Klein, M., Chakraborty, N., Cant, R.S.: Effects of turbulence on self-sustained combustion in premixed flame kernels, a direct numerical simulation (DNS) study. Flow Turbul. Combust. 81, 583–607 (2008)zbMATHGoogle Scholar
  27. 27.
    Chakraborty, N., Klein, M., Cant, R.S.: Stretch rate effects on displacement speed in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 31, 1385–1392 (2007)Google Scholar
  28. 28.
    Dunstan, T.D., Jenkins, K.W.: Flame surface density distribution in turbulent flame kernels during the early stages of growth. Proc. Combust. Inst. 32, 1427–1434 (2009)Google Scholar
  29. 29.
    Dunstan, T.D., Jenkins, K.W.: The effects of hydrogen substitution on turbulent premixed methane-air kernels using direct numerical simulationnt. Int. J. Hydrog. Energy. 34, 8389–8404 (2009)Google Scholar
  30. 30.
    Chakraborty, N., Klein, M.: Effects of global flame curvature on surface density function transport in turbulent premixed flame kernels in the thin reaction zones regime. Proc. Combust. Inst. 32, 1435–1443 (2009)Google Scholar
  31. 31.
    Lecocq, G., Richard, S., Colin, O., Vervisch, L.: Hybrid presumed pdf and flame surface density approaches for large-eddy simulation of premixed turbulent combustion. part 2, Early flame development after sparking. Combust. Flame. 158, 1215–1226 (2011)Google Scholar
  32. 32.
    Colin, O., Truffin, K.: A spark ignition model for large eddy simulation based on an FSD transport equation (ISSIM-LES). Proc. Combust. Inst. 33, 3097–3104 (2011)Google Scholar
  33. 33.
    Ahmed, I., Swaminathan, N.: Simulation of spherically expanding turbulent premixed flames. Combust. Sci.Technol. 185, 1509–1540 (2013)Google Scholar
  34. 34.
    Ahmed, I., Swaminathan, N.: 2014, Simulation of turbulent explosion of hydrogen-air mixtures. Int. J. Hydrog. Energy. 39, 9562–9572 (2014)Google Scholar
  35. 35.
    Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. Phys. Fluids. 086104, (2018)Google Scholar
  36. 36.
    Alqallaf, A., Klein, M., Chakraborty, N.: Effects of Lewis number on the evolution of curvature in spherically expanding turbulent premixed flames. Fluids. 4, 12 (2019).  https://doi.org/10.3390/fluids4010012 CrossRefGoogle Scholar
  37. 37.
    Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N.: A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. Combust. Sci. Technol. (2019).  https://doi.org/10.1080/00102202.2019.1576649 Google Scholar
  38. 38.
    Poinsot, T.J., Echekki, T., Mungal, M.G.: A study of the laminar flame tip and implications for premixed turbulent combustion. Combust. Sci. Technol. 81, 45–73 (1992)Google Scholar
  39. 39.
    Haworth, D.C., Poinsot, T.J.: Numerical simulations of Lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)Google Scholar
  40. 40.
    Rutland, C., Trouvé, A.: Direct Simulations of premixed turbulent flames with nonunity Lewis numbers. Combust. Flame. 94, 41–57 (1993)Google Scholar
  41. 41.
    Fries, D., Ochs, B.A., Saha, A., Ranjan, D., Menon, S.: Flame speed characteristics of turbulent expanding flames in a rectangular channel. Combust. Flame. 199, 1–13 (2018)Google Scholar
  42. 42.
    Sahafzadeh, M., Dworkin, S.B., Kostiuk, L.W.: Predicting the reneou of a premixed flame subjected to unsteady stretch rates. Combust. Flame. 196, 237–248 (2018)Google Scholar
  43. 43.
    Echekki, T., Chen, J.H.: Unsteady Strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame. 106, 184–202 (1996)Google Scholar
  44. 44.
    Chen, J.H., Im, H.G.: Correlation of flame speed with stretch in turbulent premixed methane/air flame. Proc. Combust. Inst. 27, 819–826 (1998)Google Scholar
  45. 45.
    Echekki, T., Chen, J.H.: Analysis of the Contribution of Curvature to Premixed Flame Propagation. Combust. Flame. 108, 308–311 (1999)Google Scholar
  46. 46.
    Chakraborty, N., Cant, S.: Unsteady effects of strain rate and curvature on turbulent premixed flames in an inlet-outlet configuration. Combust. Flame. 137, 129–147 (2004)Google Scholar
  47. 47.
    Chakraborty, N., Cant, R.S.: Influence of Lewis Number on curvature effects in turbulent premixed flame propagation in the thin reaction zones regime, Phys. Fluids. 17, 105105 (2005)zbMATHGoogle Scholar
  48. 48.
    Hawkes, E.R., Chen, J.H.: Direct numerical simulation of hydrogen-enriched lean premixed methane air flames. Combust. Flame. 138, 242–258 (2004)Google Scholar
  49. 49.
    Hawkes, E.R., Chen, J.H.: Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proc. Combust. Inst. 30, 647–655 (2005)Google Scholar
  50. 50.
    Chakraborty, N.: Comparison of displacement speed statistics of turbulent premixed flames in the regimes representing combustion in corrugated flamelets and thin reaction zones. Phys. Fluids. 19, 105109 (2007)zbMATHGoogle Scholar
  51. 51.
    Chakraborty, N., Hawkes, E.R., Chen, J.H., Cant, R.S.: Effects of strain rate and curvature on Surface Density Function transport in turbulent premixed CH4-air and H2-air flames, A comparative study. Combust. Flame. 154, 259–280 (2008)Google Scholar
  52. 52.
    Han, I., Huh, K.Y.: Roles of displacement speed on evolution of flame surface density for different turbulent intensities and Lewis numbers in turbulent premixed combustion. Combust. Flame. 152, 194–205 (2008)Google Scholar
  53. 53.
    Mizutani, Y., Nishimoto, T.: Combustion of fuel vapor-drop-air systems: Part II-spherical flames in a vessel. Combust. Flame. 20, 351–357 (1973)Google Scholar
  54. 54.
    Polymeropoulos, C.E.: Flame propagation in aerosols of fuel droplets, fuel vapor and air. Combust. Sci. Technol. 40, 217–232 (1984)Google Scholar
  55. 55.
    Silverman, I., Greenberg, J.B., Tambour, Y.: Stoichiometry and polydisperse effects in premixed spray flames. Combust. Flame. 93, 97–118 (1993)Google Scholar
  56. 56.
    Greenberg, J.B., Silverman, I., Tambour, Y.: On droplet enhancement of the burning velocity of laminar premixed spray flames. Combust. Flame. 113, 271–273 (1998)Google Scholar
  57. 57.
    Burgoyne, J.H., Cohen, L.: The effect of drop size on flame propagation in liquid aerosols. Proc. R. Soc. London. Ser. A. 225, 375–392 (1954)Google Scholar
  58. 58.
    Szekely, G.A., Faeth, G.M.: Effects of envelope flames on drop gasification rates in turbulent diffusion flames. Combust. Flame. 49, 255–259 (1983)Google Scholar
  59. 59.
    Ballal, D.R., Lefebvre, A.H.: Flame propagation in heterogeneous mixtures of fuel droplets, fuel vapor and air. Symp. Combust. 18, 321–328 (1981)Google Scholar
  60. 60.
    Reveillon, J., Vervisch, L.: Spray vaporization in nonpremixed turbulent combustion modeling: a single droplet model. Combust. Flame. 121, 75–90 (2000)Google Scholar
  61. 61.
    Nakamura, M., Akamatsu, F., Kurose, R., Katsuki, M.: Combustion mechanism of liquid fuel spray in a gaseous flame. Phys. Fluids. 17(1–14), (2005)zbMATHGoogle Scholar
  62. 62.
    Watanabe, H., Kurose, R., Hwang, S.M., Akamatsu, F.: Characteristics of flamelets in spray flames formed in a laminar counterflow. Combust. Flame. 148, 234–248 (2007)Google Scholar
  63. 63.
    Reveillon, J., Demoulin, F.X.: Evaporating droplets in turbulent reacting flows. Proc. Combust. Inst. 31, 2319–2326 (2007)Google Scholar
  64. 64.
    Sreedhara, S., Huh, K.Y.: Conditional statistics of nonreacting and reacting sprays in turbulent flows by direct numerical simulation. Proc. Combust. Inst. 31 II, 2335–2342 (2007)Google Scholar
  65. 65.
    Xia, J., Luo, K.H.: Direct numerical simulation of inert droplet effects on scalar dissipation rate in turbulent reacting and non-reacting shear layers. Flow, Turbul. Combust. 84, 397–422 (2010)zbMATHGoogle Scholar
  66. 66.
    Fujita, A., Watanabe, H., Kurose, R., Komori, S.: Two-dimensional direct numerical simulation of spray flames - Part 1: Effects of equivalence ratio, fuel droplet size and radiation, and validity of flamelet model. Fuel. 104, 515–525 (2013)Google Scholar
  67. 67.
    Wacks, D., Chakraborty, N.: Flame structure and propagation in turbulent flame-droplet interaction: A Direct Numerical Simulation analysis. Flow, Turbul. Combust. 96, 1053–1081 (2016)Google Scholar
  68. 68.
    Wacks, D., Chakraborty, N.: Flow topology and alignments of scalar gradients and vorticity in turbulent spray flames: A Direct Numerical Simulation analysis. Fuel. 184, 922–947 (2016)Google Scholar
  69. 69.
    Wacks, D., Chakraborty, N., Mastorakos, E.: Statistical analysis of turbulent flame-droplet interaction: A Direct Numerical Simulation study. Flow, Turbul. Combust. 96, 573–607 (2016)Google Scholar
  70. 70.
    Wang, Y., Rutland, C.J.: Effects of temperature and equivalence ratio on the ignition of n-heptane fuel spray in turbulent flow. Proc. Combust. Inst. 30, 893–900 (2005)Google Scholar
  71. 71.
    Schroll, P., Wandel, A.P., Cant, R.S., Mastorakos, E.: Direct numerical simulations of autoignition in turbulent two-phase flows. Proc. Combust. Inst. 32, 2275–2282 (2009)Google Scholar
  72. 72.
    Wandel, A.P., Chakraborty, N., Mastorakos, E.: Direct numerical simulations of turbulent flame expansion in fine sprays. Proc. Combust. Inst. 32, 2283–2290 (2009)Google Scholar
  73. 73.
    Wandel, A.P.: Influence of scalar dissipation on flame success in turbulent sprays with spark ignition. Combust. Flame. 161, 2579–2600 (2014)Google Scholar
  74. 74.
    Neophytou, A., Mastorakos, E., Cant, R.S.: The internal structure of igniting turbulent sprays as revealed by complex chemistry DNS. Combust. Flame. 159, 641–664 (2012)Google Scholar
  75. 75.
    Neophytou, A., Mastorakos, E., Cant, R.S.: DNS of spark ignition and edge flame propagation in turbulent droplet-laden mixing layers. Combust. Flame. 157, 1071–1086 (2010)Google Scholar
  76. 76.
    Tarrazo, E.F., Sánchez, A.L., Liñán, A., Williams, F.A.: A simple one-step chemistry model for partially premixed hydrocarbon combustion. Combust. Flame. 147, 32–38 (2006)Google Scholar
  77. 77.
    Malkeson, S.P., Chakraborty, N.: Statistical analysis of displacement speed in turbulent stratified flames: A direct numerical simulation study. Combust. Sci. Technol. 182, 1841–1883 (2010)Google Scholar
  78. 78.
    Swaminathan, N., Bray, K.N.C.: Turbulent Premixed Flames, p. 5. Cambridge University Press, NewYork (2011)Google Scholar
  79. 79.
    Kumar, K., Freeh, J.E., Sung, C.J., Huang, Y.: Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures. J. Propuls. Power. 23, 428–436 (2007)Google Scholar
  80. 80.
    Chaos, M., Kazakov, A., Zhao, Z., Dryer, F.L.: A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, 399–414 (2007)Google Scholar
  81. 81.
    Chakraborty, N., Cant, R.S.: A-Priori Analysis of the curvature and propagation terms of the Flame Surface Density transport equation for Large Eddy Simulation. Phys. Fluids. 19, 105101 (2007)zbMATHGoogle Scholar
  82. 82.
    Chakraborty, N., Cant, R.S.: Direct Numerical Simulation analysis of the Flame Surface Density transport equation in the context of Large Eddy Simulation. Proc. Combust. Inst. 32, 1445–1453 (2009)Google Scholar
  83. 83.
    Wray, A.A., Minimal storage time advanced schemes for spectral methods. California (1990)Google Scholar
  84. 84.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Rotexo-Softpredict-Cosilab, GmbH and Co. KG Bad Zwischenahn, GermanyGoogle Scholar
  86. 86.
    Neophytou, A., Mastorakos, E.: Simulations of laminar flame propagation in droplet mists. Combust. Flame. 156, 1627–1640 (2009)Google Scholar
  87. 87.
    Rogallo, R.S.: Numerical experiments in homogeneous turbulence, California (1981)Google Scholar
  88. 88.
    Peters, N.: Turbulent combustion, Cambridge monograph on mechanics, 1st edn. Cambridge University Press, Cambridge (2000)Google Scholar
  89. 89.
    Grout, R.W.: An age extended progress variable for conditioning reaction rates. Phys. Fluids. 19, 105107 (2007)zbMATHGoogle Scholar
  90. 90.
    Pera, C., Chevillard, S., Reveillon, J.: Effects of residual burnt gas heterogeneity on early flame propagation and on cyclic variability in spark-ignited engines. Combust. Flame. 160, 1020–1032 (2013)Google Scholar
  91. 91.
    Dopazo, C., Martin, J., Hierro, J.: Local geometry of isoscalar surfaces. Phys. Rev. E. 76, 056316 (2007)Google Scholar
  92. 92.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion, 1st Edition, R.T. Edwards Inc, Philadelphia (2001)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Gulcan Ozel Erol
    • 1
    Email author
  • Josef Hasslberger
    • 2
  • Markus Klein
    • 2
  • Nilanjan Chakraborty
    • 1
  1. 1.School of Engineering, Newcastle UniversityNewcastle-Upon-TyneUK
  2. 2.Bundeswehr University MunichNeubibergGermany

Personalised recommendations