Large Eddy Simulation of Pre-Chamber Ignition in an Internal Combustion Engine

  • Quentin MaléEmail author
  • Gabriel Staffelbach
  • Olivier Vermorel
  • Antony Misdariis
  • Frédéric Ravet
  • Thierry Poinsot


Using homogeneous lean mixtures is an efficient way to reduce fuel consumption and pollutant emissions in internal combustion engines. However, lean combustion requires breakthrough technologies to induce reliable ignition and fast combustion. One of these technologies uses pre-chamber to create multiple hot turbulent jets and provide ignition sites for the lean mixture. In this paper, the behaviour of a pre-chamber ignition system used to ignite the main chamber of a real engine is studied using large eddy simulation with direct integration of analytically reduced chemistry using the dynamic thickened flame model. The large eddy simulation allows to analyze the flow entering and leaving the pre-chamber, to measure the cooling and quenching effects introduced by the hot gas passages through the ducts connecting pre- and main chambers and to analyze the ignition and combustion sequences. For the case studied here, small amount of flame kernels are exhausted from the pre-chamber. Hot products penetrate the main chamber, disperse and mix with the fresh reactants and lead to ignition. The combustion in the main chamber starts in a distributed reaction mode before reaching a flamelet propagation mode.


Pre-chamber ignition Turbulent jet ignition Internal combustion engines Large eddy simulation 



This work was granted access to the high performance computing resources of “Très Grand Centre de calcul du Commissariat à l’énergie atomique et aux énergies alternatives” under the “Grand Challenge” allocation number gch0301 attributed by “Grand Équipement National de Calcul Intensif”.


Quentin Malé is the recipient of a “Conventions Industrielles de Formation par la Recherche” Ph.D. research fellowship number 2017/0295.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Dunn-Rankin, D., Therkelsen, P. (eds.): Lean Combustion - Technology and Control, 2nd edn. Academic Press, Cambridge (2016)Google Scholar
  2. 2.
    Li, H., Karim, G.A., Sohrabi, A.: The lean mixture operational limits of a spark ignition engine when operated on fuel mixtures. J. Eng. Gas Turb. Power 131 (1), 012801–7 (2009)CrossRefGoogle Scholar
  3. 3.
    Quader, A.A.: What limits lean operation in spark ignition engines-flame initiation or propagation? SAE Technical Paper (1976)Google Scholar
  4. 4.
    Attard, W.P., Toulson, E., Huisjen, A., Chen, X., Zhu, G., Schock, H.: Spark Ignition and Pre-Chamber Turbulent Jet Ignition Combustion Visualization SAE Technical Paper (2012)Google Scholar
  5. 5.
    Filho, F.A.R., Baêta, J.G.C., Teixeira, A.F., Valle, R.M., de Souza, J.L.F.: E25 stratified torch ignition engine emissions and combustion analysis. Energy Convers. Manag. 121, 251–271 (2016)CrossRefGoogle Scholar
  6. 6.
    Filho, F.A.R., Teixeira, A.F., Rodrigues da Costa, R.B., Baêta, J. G. C., Valle, R.M.: Stratified Torch Ignition Engine: Performance Analysis. SAE Technical Paper (2016)Google Scholar
  7. 7.
    Jamrozik, A.: Lean combustion by a pre-chamber charge stratification in a stationary spark ignited engine. J. Mech. Sci. Technol. 29(5), 2269–2278 (2015)CrossRefGoogle Scholar
  8. 8.
    Roethlisberger, R.P., Favrat, D.: Comparison between direct and indirect (prechamber) spark ignition in the case of a cogeneration natural gas engine, part I: Engine geometrical parameters. Appl. Therm. Eng. 22, 1217–1229 (2002)CrossRefGoogle Scholar
  9. 9.
    Biswas, S., Tanvir, S., Wang, H., Qiao, L.: On ignition mechanisms of premixed CH4/air and H2/air using a hot turbulent jet generated by pre-chamber combustion. Appl. Therm. Eng. 106, 925–937 (2016)CrossRefGoogle Scholar
  10. 10.
    Yamaguchi, S., Ohiwa, N., Hasegawa, T.: Ignition and burning process in a divided chamber bomb. Combust. Flame 59, 177–187 (1985)CrossRefGoogle Scholar
  11. 11.
    Fei, Q., Shah, A., Zhi-wei, H., Li-na, P., Tunestal, P., Xue-Song, B.: Detailed numerical simulation of transient mixing and combustion of premixed methane/air mixtures in a pre-chamber/main-chamber system relevant to internal combustion engines. Combust. Flame 188, 357–366 (2018)CrossRefGoogle Scholar
  12. 12.
    Allison, P.M., de Oliveira, M., Giusti, A., Mastorakos, E.: Pre-chamber ignition mechanism: Experiments and simulations on turbulent jet flame structure. Fuel 230, 274–281 (2018)CrossRefGoogle Scholar
  13. 13.
    Felden, A., Esclapez, L., Riber, E., Cuenot, B., Wang, H.: Including real fuel chemistry in LES of turbulent spray combustion. Combust. Flame 193, 397–416 (2018)CrossRefGoogle Scholar
  14. 14.
    Felden, A., Riber, E., Cuenot, B.: Impact of direct integration of analytically reduced chemistry in LES of a sooting swirled non-premixed combustor. Combust. Flame 191, 270–286 (2018)CrossRefGoogle Scholar
  15. 15.
    Pepiot, P.: Automatic Strategies to Model Transportation Fuel Surrogates. Ph.D. thesis, Stanford University (2008)Google Scholar
  16. 16.
    Jaravel, T., Riber, E., Cuenot, B., Bulat, G.: Large Eddy simulation of an industrial gas turbine combustor using reduced chemistry with accurate pollutant prediction. Proc. Combust. Inst. 36(3), 1–9 (2016)Google Scholar
  17. 17.
    Rochette, B., Collin-Bastiani, F., Gicquel, L., Vermorel, O., Veynante, D., Poinsot, T.: Influence of chemical schemes, numerical method and dynamic turbulent combustion modeling on LES of premixed turbulent flames. Combust. Flame 191, 417–430 (2018)CrossRefGoogle Scholar
  18. 18.
    Petrova, M.V., Williams, F.A.: A small detailed chemical-kinetic mechanism for hydrocarbon combustion. Combust. Flame 144(3), 526–544 (2006)CrossRefGoogle Scholar
  19. 19.
    Prince, J.C., Williams, F.A.: Short chemical-kinetic mechanisms for low-temperature ignition of propane and ethane. Combust. Flame 159(7), 2336–2344 (2012)CrossRefGoogle Scholar
  20. 20.
    Saxena, P., Williams, F.A.: Testing a small detailed chemical-kinetic mechanism for the combustion of hydrogen and carbon monoxide. Combust. Flame 145(1-2), 316–323 (2006)CrossRefGoogle Scholar
  21. 21.
    Ghani, A., Poinsot, T., Gicquel, L., Staffelbach, G.: LES of longitudinal and transverse self-excited combustion instabilities in a bluff-body stabilized turbulent premixed flame. Combust. Flame 162(11), 4075–4083 (2015)CrossRefGoogle Scholar
  22. 22.
    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large Eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)CrossRefGoogle Scholar
  23. 23.
    Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 40–54 (2005)CrossRefGoogle Scholar
  24. 24.
    Quillatre, P., Vermorel, O., Poinsot, T., Ricoux, P.: Large Eddy simulation of vented deflagration. Indus. Eng. Chem. Res. 52(33), 11414–11423 (2013)CrossRefGoogle Scholar
  25. 25.
    Vermorel, O., Quillatre, P., Poinsot, T.: LES of explosions in venting chamber: A test case for premixed turbulent combustion models. Combust. Flame 183, 207–223 (2017)CrossRefGoogle Scholar
  26. 26.
    Enaux, B., Granet, V., Vermorel, O., Lacour, C., Pera, C., Angelberger, C., Poinsot, T.: LES study of cycle-to-cycle variations in a spark ignition engine. Proc. Combust. Inst. 33(2), 3115–3122 (2011)CrossRefGoogle Scholar
  27. 27.
    Granet, V., Vermorel, O., Lacour, C., Enaux, B., Dugué, V., Poinsot, T.: Large-Eddy simulation and experimental study of cycle-to-cycle variations of stable and unstable operating points in a spark ignition engine. Combust. Flame 159(4), 1562–1575 (2012)CrossRefGoogle Scholar
  28. 28.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)CrossRefzbMATHGoogle Scholar
  29. 29.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: Non-dynamic formulation and initial tests. Combust. Flame 131(1–2), 159–180 (2002)CrossRefGoogle Scholar
  30. 30.
    Bilger, R.W.: The structure of turbulent nonpremixed flames. Symp. (Int.) Combust. 22(1), 475–488 (1989)CrossRefGoogle Scholar
  31. 31.
    Misdariis, A.: Schémas cinétiques réduits et couplage thermique pour les simulation aux grandes échelles du cliquetis dans les moteurs à piston. Ph.D. thesis Institut National Polytechnique de Toulouse (2015)Google Scholar
  32. 32.
    Gicquel, L.Y.M., Gourdain, N., Boussuge, J.F., Deniau, H., Staffelbach, G., Wolf, P., Poinsot, T.: High performance parallel computing of flows in complex geometries. Comptes Rendus Mecanique 339(2-3), 104–124 (2011)CrossRefzbMATHGoogle Scholar
  33. 33.
    Schonfeld, T., Rudgyard, M.: Steady and unsteady flow simulations using the hybrid flow solver AVBP. AIAA J. 37(11), 1378–1385 (1999)CrossRefGoogle Scholar
  34. 34.
    Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for LES. J. Comput. Phys. 162(2), 338–371 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Hirschfelder, J.O., Curtiss, C.F., Bird, R.B., Mayer, M.G.: Molecular Theory of Gases and Liquids, vol. 26. Wiley, New York (1954)zbMATHGoogle Scholar
  36. 36.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turb. Combust. 62(3), 183–200 (1999)CrossRefzbMATHGoogle Scholar
  37. 37.
    Lacaze, G., Richardson, E., Poinsot, T.: Large Eddy simulation of spark ignition in a turbulent methane jet. Combust. Flame 156(10), 1993–2009 (2009)CrossRefGoogle Scholar
  38. 38.
    Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 135, 203–216 (1997)CrossRefzbMATHGoogle Scholar
  39. 39.
    Moureau, V.: Simulation aux grandes échelles de l’aérodynamique interne des moteurs à piston. Ph.D. thesis, Ecole Centrale Paris (2004)Google Scholar
  40. 40.
    Moureau, V., Lartigue, G., Sommerer, Y., Angelberger, C., Colin, O., Poinsot, T.: Numerical methods for unsteady compressible multi-component reacting flows on fixed and moving grids. J. Comput. Phys. 202(2), 710–736 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Peters, N.: The turbulent burning velocity for large-scale and small-scale turbulence. J. Fluid Mech. 384, 107–132 (1999)CrossRefzbMATHGoogle Scholar
  43. 43.
    Lumley, J.L.: Engines: An Introduction. Cambridge University Press (1999)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.CERFACSToulouse Cedex 01France
  2. 2.Renault SASGuyancourt CedexFrance
  3. 3.CNRS, IMFTToulouse CedexFrance

Personalised recommendations