Experimental Investigation of the Flame Front Propagation Characteristic During Light-round Ignition in an Annular Combustor

  • Yifan Xia
  • Changhong Linghu
  • Yao Zheng
  • Chenran Ye
  • Chengbiao Ma
  • Haiwen Ge
  • Gaofeng WangEmail author


The light-round process in a transparent annular combustor which comprises 16 swirling injectors injecting lean premixed propane/air mixtures is experimentally investigated. This annular combustor is derived from the ‘MICCA’ combustor, pioneered by EM2C laboratory (Bourgouin et al., Combust. Flame 160(8), 1398, 2013).The annular chamber is formed by two transparent concentric quartz tubes, which provides optical access to high-speed imaging to diagnose the chemiluminescence of flame fronts. Two ignition modes (i.e. two extreme conditions in scheduling fuel delivery and igniter sparking), controlled by ignition procedure are investigated, thus the FFSL (Fuel First, Spark Later) and the SFFL (Spark First, Fuel Later) modes. These two ignition modes exhibit different patterns of injector-to-injector flame propagation during the light-round process. The light-around time and mean circumferential flame propagation speed are obtained for various conditions. The influence of thermal expansion, velocity fluctuation and convection to the light-round process is investigated and compared for two ignition modes.


Annular combustor Ignition dynamics Light-round process Swirling flame 



The authors are very thankful for the fruitful discussions and highlight comments from Prof. Sébastien Candel, Prof. Daniel Durox, and Dr. Kevin Prieur of the Lab EM2C; And the authors gratefully acknowledge the financial support received from the National Natural Science Foundation of China, under Grant No. 91541108 and No. 91841302, the Fundamental Research Funds for the Central Universities, under Grant No. 2017FZA4032.

Funding Information

The study was funded by the National Natural Science Foundation of China, under Grant No. 91541108 and No. 91841302, and the Fundamental Research Funds for the Central Universities, under Grant No. 2017FZA4032.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Bourgouin, J.F., Durox, D., Schuller, T., Beaunier, J., Candel, S.: Ignition dynamics of an annular combustor equipped with multiple swirling injectors. Combust. Flame 160(8), 1398 (2013)CrossRefGoogle Scholar
  2. 2.
    Lefebvre, A.H.: Gas Turbine Combustion: Alternative Fuels and Emissions. CRC Press, Boca Raton (2010)CrossRefGoogle Scholar
  3. 3.
    Boileau, M., Staffelbach, G., Cuenot, B., Poinsot, T., Bérat, C.: LES of an ignition sequence in a gas turbine engine. Combust. Flame 154(1–2), 2 (2008)CrossRefGoogle Scholar
  4. 4.
    Zhou, M., Li, G., Zhang, Z., Liang, J., Tian, L.: Effect of ignition energy on the initial propagation of ethanol/air laminar premixed flames: an experimental study. Energy Fuels 31(9), 10021 (2017)CrossRefGoogle Scholar
  5. 5.
    Starikovskiy, A., Aleksandrov, N.: Plasma-assisted ignition and combustion. Prog. Energy Combust. Sci. 39(1), 61 (2013)CrossRefGoogle Scholar
  6. 6.
    Bradley, D., Sheppard, C.G.W., Suardjaja, I.M., Woolley, R.: Fundamentals of high-energy spark ignition with lasers. Combust. Flame 138(1), 55 (2004)CrossRefGoogle Scholar
  7. 7.
    Tagalian, J., Heywood, J.B.: Flame initiation in a spark-ignition engine. Combust. Flame 64(2), 243 (1986)CrossRefGoogle Scholar
  8. 8.
    Kelley, A.P., Jomaas, G., Law, C.K.: Critical radius for sustained propagation of spark-ignited spherical flames. Combust. Flame 156(5), 1006 (2009)CrossRefGoogle Scholar
  9. 9.
    Chen, Z., Burke, M.P., Ju, Y.: On the critical flame radius and minimum ignition energy for spherical flame initiation. Proc. Combust. Inst. 33(1), 1219 (2013)CrossRefGoogle Scholar
  10. 10.
    Baum, M., Poinsot, T.: Effects of mean flow on premixed flame ignition. Combust. Sci. Technol. 106(1-3), 19 (2007)CrossRefGoogle Scholar
  11. 11.
    Sloane, T.M.: Numerical simulation of electric spark ignition in methane-air mixtures at pressures above one atmosphere. Combust. Sci. Technol. 86(1-6), 121 (1992)CrossRefGoogle Scholar
  12. 12.
    Ju, Y.: Theoretical analysis of the evolution from ignition kernel to flame ball and planar flame. Combust. Theor. Model. 11(3), 427 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wang, G., Boileau, M., Veynante, D., Truffin, K.: Large eddy simulation of a growing turbulent premixed flame kernel using a dynamic flame surface density model. Combust. Flame 159(8), 2742 (2012)CrossRefGoogle Scholar
  14. 14.
    Razus, D., Brinzea, V., Mitu, M., Movileanu, C., Oancea, D.: Burning velocity of propane-air mixtures from pressure-time records during explosions in a closed spherical vessel. Energy Fuels 26(2), 901 (2012)CrossRefGoogle Scholar
  15. 15.
    Renou, B., Boukhalfa, A., Puechberty, D., Trinité, M.: Local scalar flame properties of freely propagating premixed turbulent flames at various Lewis numbers. Combust. Flame 123(4), 507 (2000)CrossRefGoogle Scholar
  16. 16.
    Cordier, M., Vandel, A., Cabot, G., Renou, B., Boukhalfa, A.M.: Laser-Induced Spark Ignition of Premixed Confined Swirled Flames. Combust. Sci. Technol. 185(3), 379 (2013)CrossRefGoogle Scholar
  17. 17.
    Ahmed, S.F., Balachandran, R., Marchione, T., Mastorakos, E.: Spark ignition of turbulent nonpremixed bluff-body flames. Combust. Flame 151(1–2), 366 (2007)CrossRefGoogle Scholar
  18. 18.
    Marchione, T., Ahmed, S., Mastorakos, E.: Ignition of turbulent swirling n-heptane spray flames using single and multiple sparks. Combust. Flame 156(1), 166 (2009)CrossRefGoogle Scholar
  19. 19.
    Andreas, L., Renaud, L., Fabrice, G.: Statistical evaluation of ignition phenomena in turbojet engines. In: ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, UK (2010)Google Scholar
  20. 20.
    Eyssartier, A., Cuenot, B., Gicquel, L.Y., Poinsot, T.: Using LES to predict ignition sequences and ignition probability of turbulent two-phase flames. Combust. Flame 160(7), 1191 (2013)CrossRefGoogle Scholar
  21. 21.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. RT Edwards, Inc., Philadelphia (2005)Google Scholar
  22. 22.
    Linassier, G., Viguier, C., Verdier, H., Lecourt, R., Linassier, G., Lavergne, G.: Experimental investigations of the ignition performances on a multi-sector combustor under high altitude conditions. In: AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Nashville, Tennessee, AIAA2012-0934 (2012)Google Scholar
  23. 23.
    Neophytou, A., Cuenot, B., Duchaine, P.: Large-eddy simulation of ignition and flame propagation in a trisector combustor. J. Propul. Power. 32(2), 345 (2015)CrossRefGoogle Scholar
  24. 24.
    Cordier, M., Vandel, A., Renou, B., Cabot, G., Boukhalfa, M.A., Esclapez, L., Barré, D., Riber, E., Cuenot, B., Gicquel, L.: Experimental and numerical analysis of an ignition sequence in a multiple-injectors burner. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, San Antonio, Texas (2013)Google Scholar
  25. 25.
    Barré, D., Esclapez, L., Cordier, M., Riber, E., Cuenot, B., Staffelbach, G., Renou, B., Vandel, A., Gicquel, L.Y., Cabot, G.: Flame propagation in aeronautical swirled multi-burners: experimental and numerical investigation. Combust. Flame 161(9), 2387 (2014)CrossRefGoogle Scholar
  26. 26.
    Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large Eddy Simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782 (2012)CrossRefGoogle Scholar
  27. 27.
    Philip, M., Boileau, M., Vicquelin, R., Schmitt, T., Durox, D., Bourgouin, J.F., Candel, S.: Ignition sequence of an annular multi-injector combustor. Phy. Fluids 26(9), 091106 (2014)CrossRefGoogle Scholar
  28. 28.
    Philip, M., Boileau, M., Vicquelin, R., Riber, E., Schmitt, T., Cuenot, B., Durox, D., Candel, S.: Large Eddy Simulations of the ignition sequence of an annular multiple-injector combustor. Proc. Combust. Inst. 35(3), 3159 (2015)CrossRefGoogle Scholar
  29. 29.
    Philip, M., Boileau, M., Vicquelin, R., Schmitt, T., Durox, D., Bourgouin, J.F., Candel, S.: Simulation of the ignition process in an annular multiple-injector combustor and comparison with experiments. J. Eng. Gas Turbines Power 137(3), 031501 (2015)CrossRefGoogle Scholar
  30. 30.
    Bach, E., Kariuki, J., Dawson, J., Mastorakos, E., Bauer, H.: Spark ignition of single bluff-body premixed flames and annular combustors. In: 51St AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine, Texas (2013)Google Scholar
  31. 31.
    Machover, E., Mastorakos, E.: Spark ignition of annular non-premixed combustors. Exp. Therm. Fluid Sci. 73, 64 (2016)CrossRefGoogle Scholar
  32. 32.
    Machover, E., Mastorakos, E.: Numerical investigation of the stochastic behavior of light-round in annular non-premixed combustors. Combust. Sci. Technol. 189(9), 1467 (2017)CrossRefGoogle Scholar
  33. 33.
    Machover, E., Mastorakos, E.: Experimental investigation on spark ignition of annular premixed combustors. Combust. Flame 178, 148 (2017)CrossRefGoogle Scholar
  34. 34.
    Prieur, K., Durox, D., Beaunier, J., Schuller, T., Candel, S.: Ignition dynamics in an annular combustor for liquid spray and premixed gaseous injection. Proc. Combust. Inst. 36(3), 3717 (2017)CrossRefGoogle Scholar
  35. 35.
    Lancien, T., Prieur, K., Durox, D., Candel, S., Vicquelin, R.: Large-Eddy Simulation of light-round in an annular combustor with liquid spray injection and comparison with experiments. In: ASME Turbo Expo 2017, Charlotte, NC (2017)Google Scholar
  36. 36.
    Linke-diesinger, A.: Systems of Commercial Turbofan Engines: An Introduction to Systems Functions. Springer Science & Business Media, Berlin (2008)Google Scholar
  37. 37.
    Klinger, H., Bake, S., Vogt, H.F., Knieschke, D., Schober, P.: Altitude testing of the E3E core engine. In: ASME 2011 Turbo Expo: Turbine Technical Conference and Exposition, pp. 223–232. ASME (2011)Google Scholar
  38. 38.
    Denton, M.J., Tambe, S.B., Jeng, S.M.: Experimental investigation into the high altitude relight of a three-cup combustor sector. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, p. V04BT04A055. ASMEp (2018)Google Scholar
  39. 39.
    Candel, S., Durox, D., Schuller, T., Bourgouin, J.F., Moeck, J.P.: Dynamics of swirling flames. Annu. Rev. Fluid Mech. 46, 147 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Lewis, B., Von Elbe, G.: Combustion, Flames and Explosions of Gases. Harcourt Brace Jovanovich, London (1987)Google Scholar
  41. 41.
    Durox, D., Prieur, K., Schuller, T., Candel, S.: Different flame patterns linked with swirling injector interactions in an annular combustor. J. Eng. Gas Turbines Power 138(10), 101504 (2016)CrossRefGoogle Scholar
  42. 42.
    Vagelopoulos, C., Egolfopoulos, F., Law, C.: Further considerations on the determination of laminar flame speeds with the counterflow twin-flame technique. In: Symposium (international) on combustion, vol. 25, pp. 1341–1347. Elsevier (1994)Google Scholar
  43. 43.
    Lipatnikov, A.N., Chomiak, J.: Turbulent flame speed and thickness: phenomenology, evaluation, and application in multi-dimensional simulations. Prog. Energy Combust. Sci. 28(1), 1 (2002)CrossRefGoogle Scholar
  44. 44.
    Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Prog. Energy Combust. Sci 34(1), 91 (2008)CrossRefGoogle Scholar
  45. 45.
    Glassman, I., Yetter, R.A., Glumac, N.G.: Combustion. Academic Press, Cambridge (2014)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Yifan Xia
    • 1
  • Changhong Linghu
    • 1
  • Yao Zheng
    • 1
  • Chenran Ye
    • 1
  • Chengbiao Ma
    • 1
  • Haiwen Ge
    • 2
  • Gaofeng Wang
    • 1
    Email author
  1. 1.School of Aeronautics and AstronauticsZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanical EngineeringTexas Tech UniversityLubbockUSA

Personalised recommendations