Advertisement

A Correlation for the Discontinuity of the Temperature Variance Dissipation Rate at the Fluid-Solid Interface in Turbulent Channel Flows

  • Cédric FlageulEmail author
  • Iztok Tiselj
  • Sofiane Benhamadouche
  • Martin Ferrand
Article

Abstract

Discontinuity of the dissipation rate associated with the temperature variance at the fluid-solid interface is analyzed in a turbulent channel flow at a Reynolds number, based on the friction velocity of 395 and a Prandtl number of 0.71. The analysis is performed with a wall-resolved Large Eddy Simulation and the results are used to derive a regression for the dissipation rate discontinuity, which depends only on the fluid-solid thermal diffusivity and conductivity ratios. Wall-resolved Large Eddy Simulations at a higher Reynolds number and a higher Prandtl number are used to investigate the validity of two correlations derived from the regression for the selected thermal properties ratios. The present results are obtained with the open-source Computational Fluid Dynamics solver Code_Saturne, and use the fully conservative fluid-solid thermal coupling capability introduced by the authors in version 5.0.

Keywords

Large eddy simulation Conjugate heat transfer Dissipation rate RANS 

Notes

Acknowledgements

This work was financially supported by the research project of the Slovenian Research Agency P2-0026 and by the EDF-JSI collaboration, project PR-07184.

References

  1. 1.
    Benhamadouche, S.: On the use of (U)RANS and LES approaches for turbulent incompressible single phase flows in nuclear engineering applications. Nucl. Eng. Des. 312, 2–11 (2017).  https://doi.org/10.1016/j.nucengdes.2016.11.002 CrossRefGoogle Scholar
  2. 2.
    Hassan, Y.: An overview of computational fluid dynamics and nuclear applications. In: Thermal-Hydraulics of Water Cooled Nuclear Reactors, pp. 729–829. Elsevier.  https://doi.org/10.1016/B978-0-08-100662-7.00012-9 (2017)
  3. 3.
    Costa Garrido, O., El Shawish, S., Cizelj, L.: Uncertainties in the thermal fatigue assessment of pipes under turbulent fluid mixing using an improved spectral loading approach. Int. J. Fatigue 82, 550–560 (2016).  https://doi.org/10.1016/j.ijfatigue.2015.09.010 CrossRefGoogle Scholar
  4. 4.
    Poliakov, A.F.: Wall effect on temperature fluctuations in the viscous sublayer. High Temperature Science 12, 328–337 (1974)Google Scholar
  5. 5.
    Geshev, P.I.: Influence of heat conduction of the wall on the turbulent prandtl number in the viscous sublayer. J. Eng. Phys. 35, 949–952 (1978).  https://doi.org/10.1007/BF00860218 CrossRefGoogle Scholar
  6. 6.
    Flageul, C., Benhamadouche, S., Lamballais, É. , Laurence, D.: DNS of turbulent channel flow with conjugate heat transfer: Effect of thermal boundary conditions on the second moments and budgets. Int. J. Heat Fluid Flow 55, 34–44 (2015).  https://doi.org/10.1016/j.ijheatfluidflow.2015.07.009 CrossRefGoogle Scholar
  7. 7.
    Kasagi, N., Kuroda, A., Hirata, M.: Numerical investigation of near-wall turbulent heat transfer taking into account the unsteady heat conduction in the solid wall. J. Heat Transf. 111, 385–392 (1989).  https://doi.org/10.1115/1.3250689 CrossRefGoogle Scholar
  8. 8.
    Tiselj, I., Bergant, R., Mavko, B., Bajsiċ, I., Hetsroni, G.: DNS of turbulent heat transfer in channel flow with heat conduction in the solid wall. J. Heat Transf. 123(5), 849–857 (2001).  https://doi.org/10.1115/1.1389060 CrossRefGoogle Scholar
  9. 9.
    Dehoux, F., Benhamadouche, S., Manceau, R.: An elliptic blending differential flux model for natural, mixed and forced convection. Int. J. Heat Fluid Flow 63, 190–204 (2017).  https://doi.org/10.1016/j.ijheatfluidflow.2016.09.003 CrossRefGoogle Scholar
  10. 10.
    Dehoux, F., Lecocq, Y., Benhamadouche, S., Manceau, R., Brizzi, L. E.: Algebraic modeling of the turbulent heat fluxes using the elliptic blending approach—application to forced and mixed convection regimes. Flow Turbul. Combust. 88, 77–100 (2012).  https://doi.org/10.1007/s10494-011-9366-8 CrossRefzbMATHGoogle Scholar
  11. 11.
    Kasagi, N., Tomita, Y., Kuroda, A.: Direct numerical simulation of passive scalar field in a turbulent channel flow. J. Heat Transf. 114(3), 598–606 (1992).  https://doi.org/10.1115/1.2911323 CrossRefGoogle Scholar
  12. 12.
    Kawamura, H., Ohsaka, K., Abe, H., Yamamoto, K.: DNS of turbulent heat transfer in channel flow with low to medium-high prandtl number fluid. Int. J. Heat Fluid Flow 19(5), 482–491 (1998).  https://doi.org/10.1016/S0142-727X(98)10026-7 CrossRefGoogle Scholar
  13. 13.
    Abe, H., Kawamura, H., Matsuo, Y.: Surface heat-flux fluctuations in a turbulent channel flow up to R e τ = 1020 with P r = 0.025 and 0.71. Int. J. Heat Fluid Flow 25 (3), 404–419 (2004).  https://doi.org/10.1016/j.ijheatfluidflow.2004.02.010 CrossRefGoogle Scholar
  14. 14.
    Craft, T.J., Iacovides, H., Uapipatanakul, S.: Towards the development of RANS models for conjugate heat transfer. J. Turbul. 11, 22–24 (2010).  https://doi.org/10.1080/14685248.2010.494608 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mangeon, G., Benhamadouche, S., Wald, J.F., Manceau, R.: Unifying the near-wall treatment of the turbulent heat fluxes for all kinds of temperature boundary conditions with the elliptic blending approach. Proceedings of the 9th international symposium on Turbulence, Heat and Mass Transfer held in Rio de Janeiro on July 2018 (2018). Submitted, to appearGoogle Scholar
  16. 16.
    Flageul, C., Benhamadouche, S., Lamballais, É. , Laurence, D.: On the discontinuity of the dissipation rate associated with the temperature variance at the fluid-solid interface for cases with conjugate heat transfer. Int. J. Heat Mass Transf. 111, 321–328 (2017).  https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.005 CrossRefGoogle Scholar
  17. 17.
    Shams, A., Edh, N., Angele, K., Veber, P., Howard, R., Braillard, O., Chapuliot, S., Severac, E., Karabaki, E., Seichter, J., et al.: Synthesis of a CFD benchmarking exercise for a T-junction with wall. Nucl. Eng. Des. 330, 199–216 (2018).  https://doi.org/10.1016/j.nucengdes.2018.01.049 CrossRefGoogle Scholar
  18. 18.
    Hinze, J.O.: Turbulence McGraw-Hill College (1975)Google Scholar
  19. 19.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2001)zbMATHGoogle Scholar
  20. 20.
    Leschziner, M.: Statistical turbulence modelling for fluid dynamics – demystified. Imperial College Press (2015)Google Scholar
  21. 21.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999).  https://doi.org/10.1023/A:1009995426001 CrossRefzbMATHGoogle Scholar
  22. 22.
    Grötzbach, G.: Revisiting the resolution requirements for turbulence simulations in nuclear heat transfer. Nucl. Eng. Des. 241(11), 4379–4390 (2011).  https://doi.org/10.1016/j.nucengdes.2010.12.027 CrossRefGoogle Scholar
  23. 23.
    Flageul, C., Tiselj, I.: Impact of unresolved smaller scales on the scalar dissipation rate in direct numerical simulations of wall bounded flows. Int. J. Heat Fluid Flow 68, 173–179 (2017).  https://doi.org/10.1016/j.ijheatfluidflow.2017.10.009 CrossRefGoogle Scholar
  24. 24.
    Tiselj, I., Cizelj, L.: DNS of turbulent channel flow with conjugate heat transfer at prandtl number 0.01. Nucl. Eng. Des. 253, 153–160 (2012).  https://doi.org/10.1016/j.nucengdes.2012.08.008 CrossRefGoogle Scholar
  25. 25.
    Archambeau, F., Méchitoua, N., Sakiz, M.: Code_saturne: A finite volume code for the computation of turbulent incompressible flows-industrial applications, vol. 1 (2004)Google Scholar
  26. 26.
    Abe, H., Antonia, R. A.: Relationship between the heat transfer law and the scalar dissipation function in a turbulent channel flow. J. Fluid Mech. 830, 300–325 (2017).  https://doi.org/10.1017/jfm.2017.564 MathSciNetCrossRefGoogle Scholar
  27. 27.
    Kozuka, M., Seki, Y., Kawamura, H.: DNS of turbulent heat transfer in a channel flow with a high spatial resolution. Int. J. Heat Fluid Flow 30(3), 514–524 (2009).  https://doi.org/10.1016/j.ijheatfluidflow.2009.02.023 CrossRefGoogle Scholar
  28. 28.
    Fluid Dynamics: Power generation and environment department, single phase thermal-hydraulics group, EDF Lab Chatou France: Code_Saturne 5.0.0 Theory Guide (2017)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institut Jožef StefanReactor Engineering DivisionLjubljanaSlovenia
  2. 2.EDF R&D, Fluid MechanicsEnergy and Environment DepartmentParisFrance

Personalised recommendations