Actively Reduced Airfoil Drag by Transversal Surface Waves

  • Marian Albers
  • Pascal S. Meysonnat
  • Wolfgang Schröder


The flow over a DRA2303 wing section at a Reynolds number of Re = 400,000 is actively controlled by spanwise traveling transversal surface waves. The actuated low-Mach number flow is investigated by a high-resolution large-eddy simulation. Approximately 74% of the solid surface on both sides of the wing section is deflected by a sinusoidal space- and time-dependent function in the wall-normal direction. The turbulence intensitites and wall-normal vorticity fluctuations are significantly reduced and a shift from one-dimensional turbulence to two-dimensional turbulence is observed. Besides a viscous drag reduction by 8.6% with a strong decrease of skin-friction in the favorable pressure gradient region and an overall drag decrease by 7.5%, a slight increase in lift is achieved for an external flow over a realistic geometry.


Turbulent boundary layer Drag reduction Airfoil Transversal traveling surface wave Large-eddy simulation Active flow control 



The authors would like to thank the Deutsche Forschungsgemeinschaft (DFG) for the funding of the research group FOR1779. Computing resources were provided by the High Performance Computing Center Stuttgart (HLRS) and by the Jülich Supercomputing Center (JSC) within a Large-Scale Project of the Gauss Center for Supercomputing (GCS).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflicts of interest.


  1. 1.
    Walsh, M., Weinstein, L.: Drag and heat transfer on surfaces with small longitudinal fins. In: 11Th Fluid and Plasma Dynamics Conference, p. 1161 (1978)Google Scholar
  2. 2.
    Bechert, D.W., Hoppe, G., Reif, W.E.: On the drag reduction of the shark skin. AIAA Paper No., 85–0546 (1985)Google Scholar
  3. 3.
    Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36(1), 173–196 (2004)MathSciNetCrossRefGoogle Scholar
  4. 4.
    García-Mayoral, R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)CrossRefGoogle Scholar
  5. 5.
    Szodruch, J.: Viscous drag reduction on transport aircraft. AIAA Paper No., 91–0685 (1991)Google Scholar
  6. 6.
    Reneaux, J.: Overview on drag reduction technologies for civil transport aircraft. In: European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS) (2004)Google Scholar
  7. 7.
    Choi, K., Yang, X., Clayton, B.R., Glover, E.J., Atlar, M., Semenov, B.N., Kulik, V.M.: Turbulent drag reduction using compliant surfaces. Proc. R. Soc. London, Ser. A 453(1965), 2229–2240 (1997)CrossRefGoogle Scholar
  8. 8.
    Kim, E., Choi, H.: Space-time characteristics of a compliant wall in a turbulent channel flow. J. Fluid Mech. 756, 30–53 (2014)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Luhar, M., Sharma, A., McKeon, B.: A framework for studying the effect of compliant surfaces on wall turbulence. J. Fluid Mech. 768, 415–441 (2015)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Zhang, C., Wang, J., Blake, W., Katz, J.: Deformation of a compliant wall in a turbulent channel flow. J. Fluid Mech. 823, 345–390 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Ceccio, S.L.: Friction drag reduction of external flows with bubble and gas injection. Annu. Rev. Fluid Mech. 42(1), 183–203 (2010)CrossRefGoogle Scholar
  12. 12.
    Perlin, M., Dowling, D.R., Ceccio, S.L.: Freeman scholar review: passive and active skin-friction drag reduction in turbulent boundary layers. J. Fluids Eng. 138(9), 091104–091104–16 (2016)CrossRefGoogle Scholar
  13. 13.
    Gose, J.W., Golovin, K., Boban, M., Mabry, J.M., Tuteja, A., Perlin, M., Ceccio, S.L.: Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. J. Fluid Mech. 845, 560–580 (2018)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Alfredsson, P.H., Örlü, R.: Large-eddy breakup devices – a 40 years perspective from a Stockholm horizon. Flow Turbul. Combust. 100(4), 877–888 (2018)CrossRefGoogle Scholar
  15. 15.
    Bechert, D., Meyer, R., Hage, W.: Drag reduction of airfoils with miniflaps - can we learn from dragonflies?. AIAA Paper No., 2000–2315 (2000)Google Scholar
  16. 16.
    Moin, P., Shih, T., Driver, D., Mansour, N.N.: Direct numerical simulation of a three-dimensional turbulent boundary layer. Phys. Fluids A 2(10), 1846–1853 (1990)CrossRefGoogle Scholar
  17. 17.
    Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRefGoogle Scholar
  18. 18.
    Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1428–1442 (2011)CrossRefGoogle Scholar
  19. 19.
    Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161 (2009)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Nakanishi, R., Mamori, H., Fukagata, K.: Relaminarization of turbulent channel flow using traveling wave-like wall deformation. Int. J. Heat Fluid Flow 35, 152–159 (2012)CrossRefGoogle Scholar
  21. 21.
    Bai, H., Zhou, Y., Zhang, W., Xu, S., Wang, Y., Antonia, R.: Active control of a turbulent boundary layer based on local surface perturbation. J. Fluid Mech. 750, 316 (2014)CrossRefGoogle Scholar
  22. 22.
    Du, Y., Karniadakis, G.E.: Suppressing wall turbulence by means of a transverse traveling wave. Science 288(5469), 1230–1234 (2000)CrossRefGoogle Scholar
  23. 23.
    Du, Y., Symeonidis, V., Karniadakis, G.E.: Drag reduction in wall-bounded turbulence via a transverse travelling wave. J. Fluid Mech. 457, 1–34 (2002)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Zhao, H., Wu, J.Z., Luo, J.S.: Turbulent drag reduction by traveling wave of flexible wall. Fluid Dyn. Res. 34(3), 175–198 (2004)CrossRefGoogle Scholar
  25. 25.
    Itoh, M., Tamano, S., Yokota, K., Taniguchi, S.: Drag reduction in a turbulent boundary layer on a flexible sheet undergoing a spanwise traveling wave motion. J. Turbul. 7, N27 (2006)CrossRefGoogle Scholar
  26. 26.
    Tamano, S., Itoh, M.: Drag reduction in turbulent boundary layers by spanwise traveling waves with wall deformation. J. Turbul. 13, N9 (2012)CrossRefGoogle Scholar
  27. 27.
    Klumpp, S., Meinke, M., Schröder, W.: Drag reduction by spanwise transversal surface waves. J. Turbul. 11, N22 (2010b)CrossRefGoogle Scholar
  28. 28.
    Koh, S., Meysonnat, P., Statnikov, V., Meinke, M., Schröder, W.: Dependence of turbulent wall-shear stress on the amplitude of spanwise transversal surface waves. Comput. Fluids 119, 261–275 (2015)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Meysonnat, P.S., Koh, S.R., Roidl, B., Schröder, W.: Impact of transversal traveling surface waves in a non-zero pressure gradient turbulent boundary layer flow. Appl. Math. Comput. 272, 498–507 (2016)MathSciNetGoogle Scholar
  30. 30.
    Albers, M., Meysonnat, P.S., Schröder, W.: Drag reduction via transversal wave motions of structured surfaces. In: Int. Symp. Turbulence & Shear Flow Phenomena (TSFP-10) (2017)Google Scholar
  31. 31.
    Liu, P.Q., Duan, H.S., Chen, J.Z., He, Y.W.: Numerical study of suction-blowing flow control technology for an airfoil. J. Aircraft 47(1), 229–239 (2010)CrossRefGoogle Scholar
  32. 32.
    Kametani, Y., Fukagata, K., Örlü, R., Schlatter, P.: Effect of uniform blowing/suction in a turbulent boundary layer at moderate Reynolds number. Int. J. Heat Fluid Flow 55, 132–142 (2015)CrossRefGoogle Scholar
  33. 33.
    Vinuesa, R., Schlatter, P.: Skin-friction control of the flow around a wing section through uniform blowing. In: European Drag Reduction and Flow Control Meeting (EDRFCM 2017) (2017)Google Scholar
  34. 34.
    Atzori, M., Vinuesa, R., Stroh, A., Frohnapfel, B., Schlatter, P.: Assessment of skin-friction-reduction techniques on a turbulent wing section. In: 12Th ERCOFTAC Symp. on Engineering Turbulence Modeling and Measurements (ETMM12) (2018)Google Scholar
  35. 35.
    Gad-el-Hak, M.: Flow Control: Passive, Active, and Reactive Flow Management. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  36. 36.
    Henke, R.: A320 HLF Fin flight tests completed. Air Space Eur. 1(2), 76–79 (1999)CrossRefGoogle Scholar
  37. 37.
    Spalart, P.R., McLean, J.D.: Drag reduction: enticing turbulence, and then an industry. Philos. Trans. R. Soc. London, Ser. A 369(1940), 1556–1569 (2011)CrossRefGoogle Scholar
  38. 38.
    Liou, M.S., Steffen, C.: A new flux splitting scheme. J. Comput. Phys. 107, 23–39 (1993)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second-and sixth-order methods for large-eddy simulations. Comput. Fluids 31(4), 695–718 (2002)CrossRefGoogle Scholar
  40. 40.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4-6), 199–228 (1992)CrossRefGoogle Scholar
  41. 41.
    Hirt, C., Amsden, A., Cook, J.: An arbitrary Lagrangian–Eulerian computing method for all flow speeds. J. Comput. Phys. 135(2), 203–216 (1997)CrossRefGoogle Scholar
  42. 42.
    Roidl, B., Meinke, M., Schröder, W.: Zonal RANS-LES computation of transonic airfoil flow. AIAA Paper No., 2011–3974 (2011)Google Scholar
  43. 43.
    Klumpp, S., Meinke, M., Schröder, W.: Numerical simulation of riblet controlled spatial transition in a zero-pressure-gradient boundary layer. Flow Turbul. Combust. 85(1), 57–71 (2010a)CrossRefGoogle Scholar
  44. 44.
    Meysonnat, P.S., Roggenkamp, D., Li, W., Roidl, B., Schröder, W.: Experimental and numerical investigation of transversal traveling surface waves for drag reduction. Eur. J. Mech. B. Fluids 55, 313–323 (2016)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Feldhusen-Hoffmann, A., Statnikov, V., Klaas, M., Schröder, W.: Investigation of shock–acoustic-wave interaction in transonic flow. Exp. Fluids 59(1), 15 (2017)CrossRefGoogle Scholar
  46. 46.
    Fulker, J.L., Simmons, M.J.: An Experimental Investigation of Passive Shock/Boundary-Layer Control on an Aerofoil, pp. 379–400. Vieweg+Teubner Verlag, Wiesbaden (1997)Google Scholar
  47. 47.
    Stanewsky, E., Délery, J., Fulker, J., de Matteis, P.: Synopsis of the project EUROSHOCK II. In: Stanewsky, E., Délery, J., Fulker, J., de Matteis, P. (eds.) Drag Reduction by Shock and Boundary Layer Control, vol. 80, pp 1–124. Springer, Berlin (2002)Google Scholar
  48. 48.
    Shan, H., Jiang, L., Liu, C.: Direct numerical simulation of flow separation around a NACA 0012 airfoil. Comp. Fluids 34(9), 1096–1114 (2005)CrossRefGoogle Scholar
  49. 49.
    Hosseini, S., Vinuesa, R., Schlatter, P., Hanifi, A., Henningson, D.: Direct numerical simulation of the flow around a wing section at moderate Reynolds number. Int. J. Heat Fluid Flow 61, 117–128 (2016). TSFP9 special issueCrossRefGoogle Scholar
  50. 50.
    Schlatter, P., Örlü, R.: Turbulent boundary layers at moderate Reynolds numbers: inflow length and tripping effects. J. Fluid Mech. 710, 5–34 (2012)CrossRefGoogle Scholar
  51. 51.
    Vinuesa, R., Negi, P., Atzori, M., Hanifi, A., Henningson, D., Schlatter, P.: Turbulent boundary layers around wing sections up to Rec= 1,000,000. Int. J. Heat Fluid Flow 72, 86–99 (2018)CrossRefGoogle Scholar
  52. 52.
    Vinuesa, R., Prus, C., Schlatter, P., Nagib, H.M.: Convergence of numerical simulations of turbulent wall-bounded flows and mean cross-flow structure of rectangular ducts. Meccanica 51(12), 3025–3042 (2016)MathSciNetCrossRefGoogle Scholar
  53. 53.
    Koh, S.R., Meysonnat, P., Meinke, M., Schröder, W.: Drag reduction via spanwise transversal surface waves at high Reynolds numbers. Flow Turbul. Combust. 95(1), 169–190 (2015)CrossRefGoogle Scholar
  54. 54.
    Vinuesa, R., Örlü, R., Schlatter, P.: On determining characteristic length scales in pressure gradient turbulent boundary layers. J. Phys. Conf. Ser. 708(1), 012014 (2016)CrossRefGoogle Scholar
  55. 55.
    Alfredsson, P.H., Segalini, A., Örlü, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the “outer” peak. Phys. Fluids 23(4), 041702 (2011)CrossRefGoogle Scholar
  56. 56.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Tomiyama, N., Fukagata, K.: Direct numerical simulation of drag reduction in a turbulent channel flow using spanwise traveling wave-like wall deformation. Phys. Fluids 25(10), 105115 (2013)CrossRefGoogle Scholar
  58. 58.
    Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)MathSciNetCrossRefGoogle Scholar
  59. 59.
    Lumley, J.L., Newman, G.R.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82(01), 161–178 (1977)MathSciNetCrossRefGoogle Scholar
  60. 60.
    Frohnapfel, B., Lammers, P., Jovanović, J., Durst, F.: Interpretation of the mechanism associated with turbulent drag reduction in terms of anisotropy invariants. J. Fluid Mech. 577, 457–466 (2007)CrossRefGoogle Scholar
  61. 61.
    Li, W., Jessen, W., Roggenkamp, D., Klaas, M., Silex, W., Schiek, M., Schröder, W.: Turbulent drag reduction by spanwise traveling ribbed surface waves. Eur. J. Mech. B. Fluids 53, 101–112 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.JARA – High-Performance ComputingJülichGermany

Personalised recommendations