Large-Eddy Simulation of Sandia Flame D with Efficient Explicit Filtering

  • A. Bertels
  • B. Kober
  • A. Rittler
  • A. KempfEmail author


A uniform Gaussian filter has been applied explicitly to the LES conservation equations for mass, momentum and mixture to simulate a piloted non-premixed methane-air flame (Sandia Flame D). Using a basic property of exponential functions, the three dimensional Gaussian filter is decomposed into the product of three one dimensional filters, greatly reducing the cost of filtering. Seven simulations on three different grids have been performed to investigate the influence of grid refinement with a purely implicit filter, the effects of explicit filtering with increasing filter width and the effect of grid refinement at constant filter-size. Overall, consistent results have been achieved at a cost that is moderate with implicit or explicit filtering, so that explicit filtering can be applied in cases where the numerical error should be independent of the modelling error.


Large-eddy simulation Non-premixed turbulent combustion Sandia flame D Explicit filtering Gaussian filter 



The authors gratefully acknowledge the computational resources provided on MagnitUDE (DFG grant INST 20876/209-1 FUGG) of the Center for Computational Sciences and Simulation (CCSS) operated by ZIM at the University of Duisburg-Essen.

Compliance with Ethical Standards

Conflict of interest

There is no conflict of interest.


  1. 1.
    Domingo, P., Vervisch, L., Veynante, D.: Large-eddy simulation of a lifted methane jet flame in a vitiated coflow. Combust. Flame 152(3), 415–432 (2008)Google Scholar
  2. 2.
    Fiorina, B., Mercier, R., Kuenne, G., Ketelheun, A., Avdiċ, A., Janicka, J., Geyer, D., Dreizler, A., Alenius, E., Duwig, C., et al.: Challenging modeling strategies for LES of non-adiabatic turbulent stratified combustion. Combust. Flame 162(11), 4264–4282 (2015)Google Scholar
  3. 3.
    Gicquel, L.Y., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38(6), 782–817 (2012)Google Scholar
  4. 4.
    Jones, W., Prasad, V.: LES-pdf simulation of a spark ignited turbulent methane jet. Proc. Combust. Inst. 33(1), 1355–1363 (2011)Google Scholar
  5. 5.
    Pitsch, H., Steiner, H.: Scalar mixing and dissipation rate in large-eddy simulations of non-premixed turbulent combustion. Proc. Combust. Inst. 28(1), 41–49 (2000)Google Scholar
  6. 6.
    Stein, O., Olenik, G., Kronenburg, A., Marincola, F.C., Franchetti, B., Kempf, A., Ghiani, M., Vascellari, M., Hasse, C.: Towards comprehensive coal combustion modelling for LES. Flow Turbul. Combust. 90(4), 859–884 (2013)Google Scholar
  7. 7.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6(1), 35 (2004)Google Scholar
  8. 8.
    Schumann, U., Sweet, R.A.: A direct method for the solution of poisson’s equation with neumann boundary conditions on a staggered grid of arbitrary size. J. Comput. Phys. 20(2), 171–182 (1976)MathSciNetGoogle Scholar
  9. 9.
    Celik, I., Klein, M., Freitag, M., Janicka, J.: Assessment measures for URANS/DES/LES: an overview with applications. J. Turbul. (7), N48 (2006)Google Scholar
  10. 10.
    Geurts, B.J., Fröhlich, J.: A framework for predicting accuracy limitations in large-eddy simulation. Phys. Fluids 14(6), L41–L44 (2002)zbMATHGoogle Scholar
  11. 11.
    Kempf, A., Lindstedt, R., Janicka, J.: Large-eddy simulation of a bluff-body stabilized nonpremixed flame. Combust. Flame 144(1–2), 170–189 (2006)Google Scholar
  12. 12.
    Kempf, A.M., Geurts, B.J., Ma, T., Pettit, M., Stein, O.: Quality issues in combustion LES. J. Sci. Comput. 49(1), 51–64 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Nguyen, T., Proch, F., Wlokas, I., Kempf, A.: Large eddy simulation of an internal combustion engine using an efficient immersed boundary technique. Flow Turbul. Combust. 97(1), 191–230 (2016)Google Scholar
  14. 14.
    Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. 495, 323–341 (2003)zbMATHGoogle Scholar
  15. 15.
    Jeanmart, H., Winckelmans, G.: Comparison of recent dynamic subgrid-scale models in turbulent channel flow. In: Proceedings of the Summer Program 2002, pp 105–116 (2002)Google Scholar
  16. 16.
    Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for large eddy simulation of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)zbMATHGoogle Scholar
  17. 17.
    Bose, S.T., Moin, P., You, D.: Grid-independent large-eddy simulation using explicit filtering. Phys. Fluids 22(10), 105,103 (2010)Google Scholar
  18. 18.
    Lund, T.: The use of explicit filters in large eddy simulation. Comput. Math. Appl. 46(4), 603–616 (2003)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Radhakrishnan, S., Bellan, J.: Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of two-phase volumetrically dilute flow with evaporation. J. Fluid Mech. 719, 230–267 (2013)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Radhakrishnan, S., Bellan, J.: Explicitly-filtered LES for the grid-spacing-independent and discretization-order-independent prediction of a conserved scalar. Comput. Fluids 111, 137–149 (2015)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Radhakrishnan, S., Bellan, J.: Explicit filtering to obtain grid-spacing-independent and discretization-order-independent large-eddy simulation of compressible single-phase flow. J. Fluid Mech. 697, 399–435 (2012)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Gallagher, T.P., Sankaran, V.: Explicitly filtered LES of Bluff Body Stabilized Flames. In: 2018 AIAA Aerospace Sciences Meeting, p 0441 (2018)Google Scholar
  23. 23.
    Domingo, P., Vervisch, L.: DNS and approximate deconvolution as a tool to analyse one-dimensional filtered flame sub-grid scale modelling. Combust. Flame 177, 109–122 (2017)Google Scholar
  24. 24.
    Wang, Q., Ihme, M.: Regularized deconvolution method for turbulent combustion modeling. Combust. Flame 176, 125–142 (2017)Google Scholar
  25. 25.
    Barlow, R., Frank, J.: Effects of turbulence on species mass fractions in methane/air jet flames. Proc. Combust. Inst. 27(1), 1087–1095 (1998)Google Scholar
  26. 26.
    Cabra, R., Myhrvold, T., Chen, J., Dibble, R., Karpetis, A., Barlow, R.: Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modeling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29(2), 1881–1888 (2002)Google Scholar
  27. 27.
    Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3), 528–536 (2004)Google Scholar
  28. 28.
    Menon, S., Calhoon, W.H.: Subgrid mixing and molecular transport modeling in a reacting shear layer. In: Symposium (International) on Combustion, vol. 26, pp 59–66. Elsevier (1996)Google Scholar
  29. 29.
    Möller, S.I., Lundgren, E., Fureby, C.: Large eddy simulation of unsteady combustion. In: Symposium (International) on Combustion, vol. 26, pp 241–248. Elsevier (1996)Google Scholar
  30. 30.
    Poinsot, T.: Using direct numerical simulations to understand premixed turbulent combustion. In: Symposium (International) on Combustion, vol. 26, pp 219–232. Elsevier (1996)Google Scholar
  31. 31.
    Bushe, W.K., Steiner, H.: Conditional moment closure for large eddy simulation of nonpremixed turbulent reacting flows. Phys. Fluids 11(7), 1896–1906 (1999)zbMATHGoogle Scholar
  32. 32.
    Forkel, H., Janicka, J.: An efficient method for large-eddy simulation of turbulent diffusion flames. In: Proceedings of the Joint Meeting of the British, German and French Sections, pp 53–55 (1999)Google Scholar
  33. 33.
    Jones, W., Kakhi, M.: PDF modeling of finite-rate chemistry effects in turbulent nonpremixed jet flames. Combust. Flame 115(1–2), 210–229 (1998)Google Scholar
  34. 34.
    Kempf, A., Forkel, H., Chen, J.Y., Sadiki, A., Janicka, J.: Large-eddy simulation of a counterflow configuration with and without combustion. Proc. Combust. Inst. 28(1), 35–40 (2000)zbMATHGoogle Scholar
  35. 35.
    Oijen, J.v., Goey, L.d.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)Google Scholar
  36. 36.
    Raman, V., Pitsch, H., Fox, R.O.: Hybrid large-eddy simulation/lagrangian filtered-density-function approach for simulating turbulent combustion. Combust. Flame 143(1–2), 56–78 (2005)Google Scholar
  37. 37.
    McMurthy, P.A., Menon, S., Kerstein, A.R.: A linear eddy sub-grid model for turbulent reacting flows: Application to hydrogen-air combustion. In: Symposium (International) on Combustion, vol. 24, pp 271–278. Elsevier (1992)Google Scholar
  38. 38.
    Navarro-Martinez, S., Kronenburg, A., Di Mare, F.: Conditional moment closure for large eddy simulations. Flow Turbul. Combust. 75(1–4), 245–274 (2005)zbMATHGoogle Scholar
  39. 39.
    Steiner, H., Bushe, W.: Large eddy simulation of a turbulent reacting jet with conditional source-term estimation. Phys. Fluids 13(3), 754–769 (2001)zbMATHGoogle Scholar
  40. 40.
    Kronenburg, A., Cleary, M.: Multiple mapping conditioning for flames with partial premixing. Combust. Flame 155(1–2), 215–231 (2008)Google Scholar
  41. 41.
    Rittler, A., Proch, F., Kempf, A.M.: LES of the sydney piloted spray flame series with the PFGM/ATF approach and different sub-filter models. Combust. Flame 162(4), 1575–1598 (2015)Google Scholar
  42. 42.
    Bisetti, F., Blanquart, G., Mueller, M.E., Pitsch, H.: On the formation and early evolution of soot in turbulent nonpremixed flames. Combust. Flame 159(1), 317–335 (2012)Google Scholar
  43. 43.
    Rittler, A., Deng, L., Wlokas, I., Kempf, A.: Large eddy simulations of nanoparticle synthesis from flame spray pyrolysis. Proc. Combust. Inst. 36(1), 1077–1087 (2017)Google Scholar
  44. 44.
    Sung, Y., Raman, V., Fox, R.O.: Large-eddy-simulation-based multiscale modeling of TiO2 nanoparticle synthesis in a turbulent flame reactor using detailed nucleation chemistry. Chem. Eng. Sci. 66(19), 4370–4381 (2011)Google Scholar
  45. 45.
    Rieth, M., Clements, A., Rabaçal, M., Proch, F., Stein, O., Kempf, A.: Flamelet LES modeling of coal combustion with detailed devolatilization by directly coupled CPD. Proc. Combust. Inst. 36(2), 2181–2189 (2017)Google Scholar
  46. 46.
    Moore, G.E.: Cramming more components onto integrated circuits. Proc. IEEE 86(1), 82–85 (1998)MathSciNetGoogle Scholar
  47. 47.
    Barlow, R., Frank, J.: Piloted CH4/Air flames C, D, E, and F–Release 2.1 15-JUN-2007.
  48. 48.
    Schneider, C., Dreizler, A., Janicka, J., Hassel, E.: Flow field measurements of stable and locally extinguishing hydrocarbon-fuelled jet flames. Combust. Flame 135 (1–2), 185–190 (2003)Google Scholar
  49. 49.
    Masri, A., Dally, B., Barlow, R., Carter, C.: The structure of the recirculation zone of a bluff-body combustor. In: Symposium (International) on Combustion, vol. 25, pp 1301–1308. Elsevier (1994)Google Scholar
  50. 50.
    Barlow, R.: Turbulent non-premixed flame workshop. (2018)
  51. 51.
    Kempf, A.M., Wysocki, S., Pettit, M.: An efficient, parallel low-storage implementation of Klein’s turbulence generator for LES and DNS. Comput. Fluids 60, 58–60 (2012)MathSciNetzbMATHGoogle Scholar
  52. 52.
    Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23(8), 085,106 (2011)Google Scholar
  53. 53.
    Peters, N.: Turbulent Combustion. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  54. 54.
    Goodwin, D.G.: Cantera. (2009)
  55. 55.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C. Jr., Lissianski, V.V., Qin, Z.: (2000)
  56. 56.
    Floyd, J., Kempf, A.M., Kronenburg, A., Ram, R.H.: A simple model for the filtered density function for passive scalar combustion LES. Combust. Theory Mod. 13(4), 559–588 (2009)zbMATHGoogle Scholar
  57. 57.
    Olbricht, C., Stein, O.T., Janicka, J., van Oijen, J.A., Wysocki, S., Kempf, A.M.: LES of lifted flames in a gas turbine model combustor using top-hat filtered PFGM chemistry. Fuel 96, 100–107 (2012)Google Scholar
  58. 58.
    Inanc, E., Nguyen, M., Kaiser, S., Kempf, A.: High-resolution LES of a starting jet. Comput. Fluids 140, 435–449 (2016)MathSciNetzbMATHGoogle Scholar
  59. 59.
    Kempf, A., Geurts, B.J., Oefelein, J.: Error analysis of large-eddy simulation of the turbulent non-premixed sydney bluff-body flame. Combust. Flame 158(12), 2408–2419 (2011)Google Scholar
  60. 60.
    Proch, F., Domingo, P., Vervisch, L., Kempf, A.M.: Flame resolved simulation of a turbulent premixed bluff-body burner experiment. Part I: analysis of the reaction zone dynamics with tabulated chemistry. Combust. Flame 180, 321–339 (2017)Google Scholar
  61. 61.
    Rieth, M., Kempf, A., Kronenburg, A., Stein, O.: Carrier-phase DNS of pulverized coal particle ignition and volatile burning in a turbulent mixing layer. Fuel 212, 364–374 (2018)Google Scholar
  62. 62.
    Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 186, 652–665 (2003)zbMATHGoogle Scholar
  63. 63.
    Kempf, A., Sadiki, A., Janicka, J.: Prediction of finite chemistry effects using large eddy simulation. Proceedings of the Combustion Institute 29(2), 1979–1985 (2002)Google Scholar
  64. 64.
    Kempf, A., Flemming, F., Janicka, J.: Investigation of lengthscales, scalar dissipation, and flame orientation in a piloted diffusion flame by LES. Proc. Combust. Inst. 30(1), 557–565 (2005)Google Scholar
  65. 65.
    Renfro, M.W., Chaturvedy, A., King, G.B., Laurendeau, N.M., Kempf, A., Dreizler, A., Janicka, J.: Comparison of OH time-series measurements and large-eddy simulations in hydrogen jet flames. Combust. Flame 139(1–2), 142–151 (2004)Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Chair for Fluid Dynamics - Institute for Combustion and Gasdynamics (IVG)University of Duisburg-EssenDuisburgGermany

Personalised recommendations