Flow, Turbulence and Combustion

, Volume 102, Issue 3, pp 497–536 | Cite as

A Review of Models for Bubble Clusters in Cavitating Flows

  • D. FusterEmail author


This paper reviews the various modeling strategies adopted in the literature to capture the response of bubble clusters to pressure changes. The first part is focused on the strategies adopted to model and simulate the response of individual bubbles to external pressure variations discussing the relevance of the various mechanisms triggered by the appearance and later collapse of bubbles. In the second part we review available models proposed for large scale bubbly flows used in different contexts including hydrodynamic cavitation, sound propagation, ultrasonic devices and shockwave induced cavitation processes. Finally we discuss the main challenges of cavitation models.


Cavitation Bubble cluster models Single bubble dynamics 



The author would like to acknowledge the exchanges and support of Professor Cesar Dopazo and the useful discussions with Maurice Rossi.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Abgrall, R.: How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach. J. Comput. Phys. 125(1), 150–160 (1996)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abgrall, R., Karni, S.: Computations of compressible multifluids. J. Comput. Phys. 169(2), 594–623 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Abu-Al-Saud, M.O., Popinet, S., Tchelepi, H.A.: A conservative and well-balanced surface tension model. J. Comput. Phys. 371, 896–913 (2018)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Ahuja, V., Hosangadi, A., Arunajatesan, S.: Simulations of cavitating flows using hybrid unstructured meshes. J. Fluids Eng. 123(2), 331–340 (2001)Google Scholar
  5. 5.
    Ainslie, M.A., Leighton, T.G.: Review of scattering and extinction cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. J. Acoust. Soc. Am. 130(5), 3184–3208 (2011)Google Scholar
  6. 6.
    Akbar, R., Kaneshige, M., Schultz, E., Sheperd, J.: Detonations in H2-N2OCH4-NH3-O2-N2 mixtures. Final report 1, California Institute of Technology, Pasadena, CA 91125 (January 2000)Google Scholar
  7. 7.
    An, Y., Ying, C.: Model of single bubble sonoluminiscence. Phys. Rev. E 71 (036308), 1–12 (2005)Google Scholar
  8. 8.
    Ando, K.: Effects of polydispersity in bubbly flows. PhD Thesis, California Institute of Technology. See also URL (2010)
  9. 9.
    Ando, K., Colonius, T., Brennen, C.E.: Numerical simulation of shock propagation in a polydisperse bubbly liquid. Int. J. Mult Flow 37, 596–608 (2011)Google Scholar
  10. 10.
    Andriotis, A., Gavaises, M., Arcoumanis, C.: Vortex flow and cavitation in diesel injector nozzles. J. Fluid Mech. 610, 195–215 (2008)zbMATHGoogle Scholar
  11. 11.
    Apfel, R.E.: The role of impurities in cavitation-threshold determination. J. Acoust. Soc. Am. 48(5B), 1179–1186 (1970)Google Scholar
  12. 12.
    Atchley, A.A., Prosperetti, A.: The crevice model of bubble nucleation. J. Acoust. Soc. Am. 86, 1065 (1989)Google Scholar
  13. 13.
    Azouzi, M.M., Ramboz, C., Lenain, J.-F., Caupin, F.: A coherent picture of water at extreme negative pressure. Nat. Phys. 9(1), 38 (2013)Google Scholar
  14. 14.
    Baer, M.R., Nunziato, J.W.: A two-phase mixture theory for the deflagration-to-detonation transition (ddt) in reactive granular materials. Int. J. Multiphase Flow 12(6), 861–889 (1986)zbMATHGoogle Scholar
  15. 15.
    Bailey, M.R., McAteer, J.A., Pishchalnikov, Y.A., Hamilton, M.F., Colonius, T.: Progress in lithotripsy research. Acoust. Today 2, 18–29 (2006)Google Scholar
  16. 16.
    Baldwin, B., Lomax, H.: Thin-layer approximation and algebraic model for separated turbulentflows. In: 16Th Aerospace Sciences Meeting, p. 257 (1978)Google Scholar
  17. 17.
    Bensow, R.E., Bark, G.: Implicit les predictions of the cavitating flow on a propeller. J. Fluids Eng. 132(4), 041302 (2010)Google Scholar
  18. 18.
    Bergamasco, L., Fuster, D.: Oscillation regimes of gas/vapor bubbles. Int. J. Heat Mass Transfer 112, 72–80 (2017)Google Scholar
  19. 19.
    Blake, J.R., Gibson, D.C.: Growth and collapse of a vapour cavity near a free surface. J. Fluid Mech. 111, 123–140 (1981)Google Scholar
  20. 20.
    Blake, J.R., Gibson, D.C.: Cavitation bubbles near boundaries. Annu. Rev. Fluid Mech. 19(1), 99–123 (1987)Google Scholar
  21. 21.
    Brackbill, J.U., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J Comput. Phys. 100, 335–354 (1992)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Brandner, P.A., Walker, G.J., Niekamp, P.N., Anderson, B.: An experimental investigation of cloud cavitation about a sphere. J. Fluid Mech. 656, 147–176 (2010)zbMATHGoogle Scholar
  23. 23.
    Bremond, N., Arora, M., Dammer, S.M., Lohse, D.: Interaction of cavitation bubbles on a wall. Phys Fluids 121505, 18 (2006)zbMATHGoogle Scholar
  24. 24.
    Bremond, N., Arora, M., Ohl, C.D., Lohse, D.: Controlled multibubble surface cavitation. Phys. Rev. Let. 96(22), 224501 (2006)Google Scholar
  25. 25.
    Bremond, N., Arora, M., Ohl, C.-D., Lohse, D.: Cavitation on surfaces. J. Phys. Condens. Matter 17(45), S3603 (2005)zbMATHGoogle Scholar
  26. 26.
    Brennen, C.: The dynamic behavior and compliance of a stream of cavitating bubbles. J. Fluids Eng. 95(4), 533–541 (1973)Google Scholar
  27. 27.
    Brennen, C.: Cavitation and Bubble Dynamics, p 254. Oxford University Press, New York (1995). ISBN 0195094093Google Scholar
  28. 28.
    Brennen, C.E.: Cavitation in Medicine. Interface focus 5(5), 20150022 (2015)Google Scholar
  29. 29.
    Brøns, M., Thompson, M.C., Leweke, T., Hourigan, K.: Vorticity generation and conservation for two-dimensional interfaces and boundaries. J. Fluid Mech. 758, 63–93 (2014)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Caflisch, R.E., Miksis, M.J., Papanicolaou, G.C., Ting, L.: Effective equations for wave propagation in bubbly liquids. J. Fluid Mech. 153, 259–273 (1985)zbMATHGoogle Scholar
  31. 31.
    Campbell, I.J., Pitcher, A.S.: Shock waves in a liquid containing gas bubbles. Proc. R. Soc. Lond A 243(1235), 534–545 (1958)zbMATHGoogle Scholar
  32. 32.
    Caupin, F., Herbert, E.: Cavitation in water: a review. Comptes Rendus Physique 7(9-10), 1000–1017 (2006)Google Scholar
  33. 33.
    Chahine, G.L.: The final stage of the collapse of a cavitation bubble near a rigid wall. J. Fluid Mech. 1(257), 147–181 (1993)zbMATHGoogle Scholar
  34. 34.
    Chahine, G.L., Kapahi, A., Choi, J.K., Hsiao, C.T.: Modeling of surface cleaning by cavitation bubble dynamics and collapse. Ultrason. Sonochem. 29, 528–549 (2016)Google Scholar
  35. 35.
    Chiapolino, A., Saurel, R., Nkonga, B.: Sharpening diffuse interfaces with compressible fluids on unstructured meshes. J. Comput. Phys. 340, 389–417 (2017)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Colombet, D., Goncalvès, E., Fortes-Patella, R.: On numerical simulation of cavitating flows under thermal regime. Int. J. Heat Mass Transfer 105, 411–428 (2017)Google Scholar
  37. 37.
    Colonius, T., Fuster, D.: Investigation of a New Model for Bubbly Cavitating Flow. In: Proceedings 8Th Int. Symp. Cav. (2012)Google Scholar
  38. 38.
    Commander, K.W., Prosperetti, A.: Linear pressure waves in bubbly liquids Comparison between theory and experiments. J. Acoust. Soc. Am. 85, 732 (1989)Google Scholar
  39. 39.
    Coralic, V., Colonius, T.: Finite-volume weno scheme for viscous compressible multicomponent flows. J. Comput. Phys. 274, 95–121 (2014)MathSciNetzbMATHGoogle Scholar
  40. 40.
    Coste, C., Laroche, C.: S. Fauve. Sound propagation in a liquid with vapour bubbles. EPL (Europhys. Lett.) 11(4), 343–347 (1990)Google Scholar
  41. 41.
    Coutier-Delgosha, O., Reboud, J.L., Delannoy, Y.: Numerical simulation of the unsteady behaviour of cavitating flows. Int. J. Numer. Methods Fluids 42(5), 527–548 (2003)zbMATHGoogle Scholar
  42. 42.
    Crespo, A.: Sound and shock waves in liquids containing bubbles. Phys. Fluids 12(11), 2274–2282 (1969)zbMATHGoogle Scholar
  43. 43.
    Crum, L.A.: Acoustic cavitation thresholds in water. In: Cavitation and Inhomogeneities in Underwater Acousticspp. pp. 84–89. Springer (1980)Google Scholar
  44. 44.
    d’Agostino, L., Brennen, C.E.: On the acoustical dynamics of bubble clouds (1983)Google Scholar
  45. 45.
    d’Agostino, L., Brennen, C.E.: Linearized dynamics of spherical bubble clouds. J. Fluid Mech. 199, 155–176 (1989)MathSciNetzbMATHGoogle Scholar
  46. 46.
    De Lorenzo, M., Lafon, P.H., Di Matteo, M., Pelanti, M., Seynhaeve, J.M., Bartosiewicz, Y.: Homogeneous two-phase flow models and accurate steam-water table look-up method for fast transient simulations. Int. J. Multiphase Flow 95, 199–219 (2017)MathSciNetGoogle Scholar
  47. 47.
    De Lorenzo, M., Pelanti, M., Lafon, P.: Hllc-type and path-conservative schemes for a single-velocity six-equation two-phase flow model: a comparative study. Appl. Math. Comput. 333, 95–117 (2018)MathSciNetGoogle Scholar
  48. 48.
    Dean, R.B.: The formation of bubbles. J. Appl. Phys. 15(5), 446–451 (1944)Google Scholar
  49. 49.
    Debenedetti, P.G.: Metastable Liquids: Concepts and Principles. Princeton University Press, Princeton (1996)Google Scholar
  50. 50.
    Degani, D., Schifft, L.B.: Computation of turbulent supersonic flows around pointed bodies having crossflow separation. J. Comput. Phys. 66(1), 173–196 (1986)zbMATHGoogle Scholar
  51. 51.
    Delale, C.F., Nas, S., Tryggvason, G.: Direct numerical simulations of shock propagation in bubbly liquids. Phys. Fluids 17(12), 121705 (2005)zbMATHGoogle Scholar
  52. 52.
    Delale, C.F., Tryggvason, G.: Shock structure in bubbly liquids: comparison of direct numerical simulations and model equations. Shock Waves 17(6), 433–440 (2008)zbMATHGoogle Scholar
  53. 53.
    Dellanoy, Y., Kueny, J.L.: Two phase flow approach in unsteady cavitation modeling. In: Cavitation and Multiphase Flow Forum, vol. 98, pp 153–158 (1990)Google Scholar
  54. 54.
    Denner, F., Xiao, C.N., van Wachem, B.G.M.: Pressure-based algorithm for compressible interfacial flows with acoustically-conservative interface discretisation. J. Comput. Phys. 367, 192–234 (2018)MathSciNetzbMATHGoogle Scholar
  55. 55.
    Didenko, Y.T., McNamara III, W.B., Suslick, K.S.: Effect of noble gases on sonoluminescence temperatures during multibubble cavitation. Phys. Rev. Lett. 84 (4), 777 (2000)Google Scholar
  56. 56.
    Dijkink, R., Ohl, C.D.: Measurement of cavitation induced wall shear stress. Appl. Phys. Lett. 93(25), 254107 (2008)Google Scholar
  57. 57.
    Doc, J.B., Conoir, J.M., Marchiano, R., Fuster, D.: Nonlinear acoustic propagation in bubbly liquids multiple scattering, softening and hardening phenomena. J. Acoust. Soc. Am. 139(4), 1703–1712 (2016)Google Scholar
  58. 58.
    Dopazo, C.: On conditioned averages for intermittent turbulent flows. J. Fluid Mech. 81(3), 433–438 (1977)zbMATHGoogle Scholar
  59. 59.
    Dopazo, C., O’Brien, E.: Intermittency in free turbulent shear flows. In: Turbulent Shear Flows I, pp 6–23. Springer (1979)Google Scholar
  60. 60.
    Dular, M., Coutier-Delgosha, O.: Thermodynamic effects during growth and collapse of a single cavitation bubble. J. Fluid Mech. 736, 44–66 (2013)zbMATHGoogle Scholar
  61. 61.
    Dular, M., Stoffel, B., Širok B.: Development of a cavitation erosion model. Wear 261(5–6), 642–655 (2006)Google Scholar
  62. 62.
    Epstein, P.S., Plesset, M.S.: On the stability of gas bubbles in liquid-gas solutions. J. Chem. Phys. 18, 1505 (1950)Google Scholar
  63. 63.
    Esche, R.: Untersuchung der schwingungskavitation in flüssigkeiten. Acta Acustica united with Acustica 2(6), 208–218 (1952)Google Scholar
  64. 64.
    Franc, J.P., Riondet, M., Karimi, A., Chahine, G.L.: Material and velocity effects on cavitation erosion pitting. Wear 274, 248–259 (2012)Google Scholar
  65. 65.
    Freund, J., Colonius, T., Evan, A.P.: A cumulative shear mechanism for tissue damage initiation in shock-wave lithotripsy. Ultrasound Med. Biol. 33(9), 1495–1503 (2007)Google Scholar
  66. 66.
    Fureby, C., Grinstein, F.F.: Monotonically integrated large eddy simulation of free shear flows. AIAA Journal 37(5), 544–556 (1999)Google Scholar
  67. 67.
    Fureby, C., Grinstein, F.F.: Large eddy simulation of high-reynolds-number free and wall-bounded flows. J. Comput. Phys. 181(1), 68–97 (2002)MathSciNetzbMATHGoogle Scholar
  68. 68.
    Fuster, D.: An energy preserving formulation for the simulation of multiphase turbulent flows. J. Comput. Phys. 235, 114–128 (2013)MathSciNetGoogle Scholar
  69. 69.
    Fuster, D., Colonius, T.: Modeling bubble clusters in compressible liquids. J. Fluid Mech. 688, 253–289 (2011)zbMATHGoogle Scholar
  70. 70.
    Fuster, D., Conoir, J.M., Colonius, T.: Effect of direct bubble-bubble interactions on linear-wave propagation in bubbly liquids. Phys. Rev. E 90(6), 063010 (2014)Google Scholar
  71. 71.
    Fuster, D., Dopazo, C., Hauke, G.: Liquid compressibility effects during the collapse of a single cavitating bubble. J. Acoust. Soc. Am. 129(1), 122–131 (2011)Google Scholar
  72. 72.
    Fuster, D., Hauke, G., Dopazo, C.: Parametric analysis for a single collapsing bubble. Journal of Flow, Turbulence and Combustion 82, 25–46 (2008)Google Scholar
  73. 73.
    Fuster, D., Hauke, G., Dopazo, C.: Influence of accommodation coefficient on nonlinear bubble oscillations. J. Acoust. Soc Am. 128, 5–10 (2010)Google Scholar
  74. 74.
    Fuster, D., Montel, F.: Mass transfer effects on linear wave propagation in diluted bubbly liquids. J. Fluid Mech. 779, 598–621 (2015)MathSciNetzbMATHGoogle Scholar
  75. 75.
    Fuster, D., Pham, K., Zaleski, S.: Stability of bubbly liquids and its connection to the process of cavitation inception. Phys. Fluids 26, 042002 (2014)Google Scholar
  76. 76.
    Fuster, D., Popinet, S.: An all-mach method for the simulation of bubble dynamics problems in the presence of surface tension. J. Comput. Phys. 374, 752–768 (2018)MathSciNetzbMATHGoogle Scholar
  77. 77.
    Gaitan, F., Crum, L.A., Church, C., Roy, R.: Sonoluminiscence and bubble dynamics for a single, stable, cavitation bubble. J. Acoust. Soc. Am. 91(063166), 3166–3183 (1992)Google Scholar
  78. 78.
    Ganesh, H., Mäkiharju, S.A., Ceccio, S.L.: Bubbly shock propagation as a mechanism for sheet-to-cloud transition of partial cavities. J. Fluid Mech. 802, 37–78 (2016)MathSciNetGoogle Scholar
  79. 79.
    Garrick, D.P., Owkes, M., Regele, J.D.: A finite-volume hllc-based scheme for compressible interfacial flows with surface tension. J. Comput. Phys. 339, 46–67 (2017)MathSciNetzbMATHGoogle Scholar
  80. 80.
    Giannadakis, E., Gavaises, M., Arcoumanis, C.: Modelling of cavitation in diesel injector nozzles. J. Fluid Mech. 616, 153–193 (2008)zbMATHGoogle Scholar
  81. 81.
    Gilmore, F.R.: The growth or collapse of a spherical bubble in a viscous compressible liquid (1952)Google Scholar
  82. 82.
    Gnanaskandan, A., Mahesh, K.: A numerical method to simulate turbulent cavitating flows. Int. J. Multiphase Flow 70, 22–34 (2015)MathSciNetGoogle Scholar
  83. 83.
    Gnanaskandan, A., Mahesh, K.: Large eddy simulation of the transition from sheet to cloud cavitation over a wedge. Int. J. Multiphase Flow 83, 86–102 (2016)MathSciNetGoogle Scholar
  84. 84.
    Gnanaskandan, A., Mahesh, K.: Numerical investigation of near-wake characteristics of cavitating flow over a circular cylinder. J. Fluid Mech. 790, 453–491 (2016)MathSciNetzbMATHGoogle Scholar
  85. 85.
    Goncalves, E.: Modeling for non isothermal cavitation using 4-equation models. Int. J. Heat Mass Transfer 76, 247–262 (2014)Google Scholar
  86. 86.
    Goncalves, E., Patella, R.F.: Numerical simulation of cavitating flows with homogeneous models. Comput. Fluids 38(9), 1682–1696 (2009)zbMATHGoogle Scholar
  87. 87.
    Gopalan, S., Katz, J.: Flow structure and modeling issues in the closure region of attached cavitation. Phys. Fluids 12(4), 895–911 (2000)zbMATHGoogle Scholar
  88. 88.
    Grab, M., Quintal, B., Caspari, E., Deuber, C., Maurer, H., Greenhalgh, S.: The effect of boiling on seismic properties of water-saturated fractured rock. J. Geophys. Res. Solid Earth 122(11), 9228–9252 (2017)Google Scholar
  89. 89.
    Grandjean, H., Jacques, N., Zaleski, S.: Shock propagation in liquids containing bubbly clusters: a continuum approach. J. Fluid Mech. 701, 304–332 (2012)zbMATHGoogle Scholar
  90. 90.
    Groß, T.F., Pelz, P.F.: Diffusion-driven nucleation from surface nuclei in hydrodynamic cavitation. J. Fluid Mech. 830, 138–164 (2017)Google Scholar
  91. 91.
    Gumerov, N.A.: Dynamics of vapor bubbles with nonequilibrium phase transitions in isotropic acoustic fields. Phys. Fluids 12(1), 71–88 (2000)zbMATHGoogle Scholar
  92. 92.
    Gumerov, N.A., Hsiao, C.T., Goumilevski, A.G.: Determination of the accomodation coefficient using vapor/gas bubble dynamics in an acoustic field. Technical Report 1, California Institute of Technology, DYNAFLOW, Inc., Fulton, Maryland, January 2001. See also URL (date last viewed 09/05)
  93. 93.
    Gumerov, N.A.: Weakly non-linear oscillations of the radius of a vapour bubble in an acoustic field. J. Appl. Math. Mech 55, 205 (1991)zbMATHGoogle Scholar
  94. 94.
    Hao, Y., Prosperetti, A.: The dynamics of vapor bubbles in acoustic pressure fields. Phys. Fluids 11(8), 2008–2019 (1999)MathSciNetzbMATHGoogle Scholar
  95. 95.
    Harkin, A., Kaper, T.J., Nadim, A.: Coupled pulsation and translation of two gas bubbles in a liquid. J. Fluid Mech. 445, 377–411 (2001)MathSciNetzbMATHGoogle Scholar
  96. 96.
    Harlow, F.H., Welch, J.E.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. The Phys. Fluids 8(12), 2182–2189 (1965)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Newton Harvey, E., Barnes, D.K., McElroy, W m D, Whiteley, A.H., Pease, D.C., Cooper, K.W.: Bubble formation in animals. i. physical factors. J. Cell. Physiol. 24(1), 1–22 (1944)Google Scholar
  98. 98.
    Newton Harvey, E., Whiteley, A.H., McElroy, W.D., Pease, D.C., Barnes, D.K.: Bubble formation in animals. ii. gas nuclei and their distribution in blood and tissues. J. Cell. Physiol. 24(1), 23–34 (1944)Google Scholar
  99. 99.
    Hauke, G., Fuster, D., Dopazo, C.: Dynamics of a single cavitating and reacting bubble. Phys. Rev. E. 75(066310), 1–14 (2007)MathSciNetGoogle Scholar
  100. 100.
    Hawker, N.A., Ventikos, Y.: Interaction of a strong shockwave with a gas bubble in a liquid medium: a numerical study. J. Fluid Mech. 701, 59–97 (2012)zbMATHGoogle Scholar
  101. 101.
    Hertz, H.: ÜBer die Verdunstug der flüssigkeiten, Inbesondere des Quecksilbers im lufteren räume (on the evaporation of fluids, especially of mercury, in vacuum spaces). Ann. Phys. 17, 177 (1982)Google Scholar
  102. 102.
    Hidalgo, V., Luo, X., Escaler Puigoriol, F.X., Ji, B., Aguinaga, A.: Implicit large eddy simulation of unsteady cloud cavitation around a plane-convex hydrofoil. J. Hydrodyn. 27(6), 815–823 (2015)Google Scholar
  103. 103.
    Ilinskii, Y.A., Hamilton, M.F., Zabolotskaya, E.A.: Bubble interaction dynamics in Lagrangian and Hamiltonian mechanics. J. Acoust. Soc. Am. 121, 786 (2007)Google Scholar
  104. 104.
    Jemison, M., Sussman, M., Arienti, M.: Compressible, multiphase semi-implicit method with moment of fluid interface representation. J. Comput. Phys. 279, 182–217 (2014)MathSciNetzbMATHGoogle Scholar
  105. 105.
    Ji, B., Luo, X., Wu, Y., Peng, X., Duan, Y.: Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil. Int. J. Multiphase Flow 51, 33–43 (2013)Google Scholar
  106. 106.
    Ji, B., Luo, X.W., Arndt, R.E.A., Peng, X., Wu, Y.: Large eddy simulation and theoretical investigations of the transient cavitating vortical flow structure around a naca66 hydrofoil. Int. J. Multiphase Flow 68, 121–134 (2015)MathSciNetGoogle Scholar
  107. 107.
    Johansen, S.T., Wu, J., Shyy, W.: Filter-based unsteady rans computations. Int. J. Heat Fluid Flow 25(1), 10–21 (2004)Google Scholar
  108. 108.
    Johnsen, E., Colonius, T.: Implementation of weno schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006)MathSciNetzbMATHGoogle Scholar
  109. 109.
    Johnsen, E., Colonius, T.: Implementation of WENO schemes in compressible multicomponent flow problems. J. Comput. Phys. 219(2), 715–732 (2006)MathSciNetzbMATHGoogle Scholar
  110. 110.
    Johnsen, E., Colonius, T.: Shock-induced collapse of a gas bubble in shockwave lithotripsy. J. Acoust. Soc. Am. 124, 2008 (2011)Google Scholar
  111. 111.
    Johnsen, E., Colonius, T.: Numerical simulations of non-spherical bubble collapse. J. Fluid Mech. 629, 231–262 (2009)MathSciNetzbMATHGoogle Scholar
  112. 112.
    Jones, S.F., Evans, G.M., Galvin, K.P.: Bubble nucleation from gas cavities: a review. Adv. Colloid Interface Sci. 80(1), 27–50 (1999)Google Scholar
  113. 113.
    Jones, W.P., Launder, B.E.: The prediction of laminarization with a two-equation model of turbulence. Int. J. Heat Mass Transfer 15(2), 301–314 (1972)Google Scholar
  114. 114.
    Kapila, A.K., Menikoff, R., Bdzil, J.B., Son, S.F., Stewart, D.S.: Two-phase modeling of deflagration-to-detonation transition in granular materials reduced equations. Phys. Fluids 13(10), 3002–3024 (2001)zbMATHGoogle Scholar
  115. 115.
    Keller, J., Miksis, M.: Bubble oscillations of large amplitude. J. Acoust. Soc Am. 68(2), 628–633 (1980)zbMATHGoogle Scholar
  116. 116.
    Khabeev, N.S.: Heat transfer and phase transition effects in the oscillation of vapor bubbles. Sov. Phys. Acoust. 21, 501 (1976)Google Scholar
  117. 117.
    Khabeev, N.S.: Diffusion effects in the oscillation of vapor–gas bubbles in a sound field. Int. J. Heat Mass Transfer 50(17–18), 3556–3560 (2007)zbMATHGoogle Scholar
  118. 118.
    Kim, J., Lee, J.S.: Numerical study of cloud cavitation effects on hydrophobic hydrofoils. Int. J. Heat Mass Transfer 83, 591–603 (2015)Google Scholar
  119. 119.
    Klaseboer, E., Fong, S.W., Turangan, C.K., Khoo, B.C., Szeri, A.J., Calvisi, M.L., Sankin, G.N., Zhong, P.: Interaction of lithotripter shockwaves with single inertial cavitation bubbles. J. Fluid Mech. 593, 33–56 (2007)zbMATHGoogle Scholar
  120. 120.
    Knudsen, M.: Maximum rate of vaporization of mercury. Ann. Phys. 47, 697 (1915)Google Scholar
  121. 121.
    Koch, M., Lechner, C., Reuter, F., Köhler, K., Mettin, R., Lauterborn, W.: Numerical modeling of laser generated cavitation bubbles with the finite volume and volume of fluid method, using openfoam. Comput. Fluids 126, 71–90 (2016)MathSciNetzbMATHGoogle Scholar
  122. 122.
    Koukouvinis, P., Gavaises, M., Supponen, O., Farhat, M.: Numerical simulation of a collapsing bubble subject to gravity. Phys. Fluids 28(3), 032110 (2016)Google Scholar
  123. 123.
    Kubota, A., Kato, H., Yamaguchi, H.: A new modelling of cavitating flows: a numerical study of unsteady cavitation on a hydrofoil section. J. Fluid Mech. 240, 59–96 (1992)Google Scholar
  124. 124.
    Kunz, R.F., Boger, D.A., Chyczewski, T.S., Stinebring, D., Gibeling, H., Govindan, T.R.: Multi-phase cfd analysis of natural and ventilated cavitation about submerged bodies. In: 3rd ASME/JSME Joint Fluids Engineering Conference, vol. 1823. San Francisco (1999)Google Scholar
  125. 125.
    Kunz, R.F., Boger, D.A., Stinebring, D.R., Chyczewski, T.S., Lindau, J.W., Gibeling, H.J., Venkateswaran, S., Govindan, T.R.: A preconditioned navier–stokes method for two-phase flows with application to cavitation prediction. Comput. Fluids 29(8), 849–875 (2000)zbMATHGoogle Scholar
  126. 126.
    Landau, L.D., Lifshitz, E.M.: Fluid mechanics. Pergamon Press, Oxford (1987)Google Scholar
  127. 127.
    Lauterborn, W., Bolle, H.: Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary. J. Fluid Mech. 72(02), 391–399 (1975)Google Scholar
  128. 128.
    Legendre, D., Borée, J., Magnaudet, J.: Thermal and dynamic evolution of a spherical bubble moving steadily in a superheated or subcooled liquid. Phys. Fluids 10(6), 1256–1272 (1998)Google Scholar
  129. 129.
    Leroy, V., Strybulevych, A., Scanlon, M.G., Page, J.H.: Transmission of ultrasound through a single layer of bubbles. Eur. Phys. J. E 29(1), 123–130 (2009)Google Scholar
  130. 130.
    Lezzi, A., Prosperetti, A.: Bubble dynamics in a compressible liquid. Part 2. Second-order theory. J. Fluid Mech. 185, 289–321 (1987)zbMATHGoogle Scholar
  131. 131.
    Lin, H., Storey, B.D., Szeri, A.J.: Inertially driven inhomogeneities in violently collapsing bubbles: the validity of the rayleigh-plesset equation. J. Fluid Mech. 452, 145–162 (2002)MathSciNetzbMATHGoogle Scholar
  132. 132.
    Lohse, D., Zhang, X.: Surface nanobubbles and nanodroplets. Rev. Mod. Phys. 87(3), 981 (2015)MathSciNetGoogle Scholar
  133. 133.
    Louisnard, O.: A simple model of ultrasound propagation in a cavitating liquid. Part I: Theory, nonlinear attenuation and traveling wave generation. Ultrason. Sonochem. 19(1), 56–65 (2012)Google Scholar
  134. 134.
    Louisnard, O.: A simple model of ultrasound propagation in a cavitating liquid. Part II: Primary bjerknes force and bubble structures. Ultrason. Sonochem. 19(1), 66–76 (2012)Google Scholar
  135. 135.
    Louisnard, O., Gonzalez-Garcia, J., Tudela, I., Klima, J., Saez, V., Vargas-Hernandez, Y.: Fem simulation of a sono-reactor accounting for vibrations of the boundaries. Ultrason. Sonochem. 16(2), 250–259 (2009)Google Scholar
  136. 136.
    Lundgren, T., Koumoutsakos, P.: On the generation of vorticity at a free surface. J. Fluid Mech. 382, 351–366 (1999)MathSciNetzbMATHGoogle Scholar
  137. 137.
    Luo, X., Bin, J., Tsujimoto, Y.: A review of cavitation in hydraulic machinery. J. Hydrodyn. Ser. B 28(3), 335–358 (2016)Google Scholar
  138. 138.
    Ma, J., Chahine, G.L., Hsiao, C.T.: Spherical bubble dynamics in a bubbly medium using an euler–lagrange model. Chem. Eng. Sci. 128, 64–81 (2015)Google Scholar
  139. 139.
    Maeda, K., Colonius, T., Kreider, W., Maxwell, A., Bailey, M.: Modeling and experimental analysis of acoustic cavitation bubble clouds for burst-wave lithotripsy. J. Acoust. Soc. Am. 140(4), 3307–3307 (2016)Google Scholar
  140. 140.
    Maeda, K., Colonius, T., Kreider, W., Maxwell, A.D., Bailey, M.: Quantification of the shielding of kidney stones by bubble clouds during burst wave lithotripsy. J. Acoust. Soc. Am. 141(5), 3673–3673 (2017)Google Scholar
  141. 141.
    Mallock, A.: The damping of sound by frothy liquids. Proc. R. Soc. London, Ser. A 84(572), 391–395 (1910)zbMATHGoogle Scholar
  142. 142.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal 32(8), 1598–1605 (1994)Google Scholar
  143. 143.
    Menzl, G., Gonzalez, M., Geiger, P., Caupin, F., Abascal, J., Valeriani, C., Dellago, C.: Molecular mechanism for cavitation in water under tension. Proc. Natl. Acad. Sci. 113(48), 13582–13587 (2016)Google Scholar
  144. 144.
    Merkle, C.L.: Computational modelling of the dynamics of sheet cavitation. In: Proceedings of the 3rd Int. Symp. on Cavitation, p 1998. Grenoble, France (1998)Google Scholar
  145. 145.
    Miller, S.T., Jasak, H., Boger, D.A., Paterson, E.G., Nedungadi, A.: A pressure-based, compressible, two-phase flow finite volume method for underwater explosions. Comput. Fluids 87, 132–143 (2013)MathSciNetzbMATHGoogle Scholar
  146. 146.
    Minnaert, M.: On musical air-bubbles and the sounds of running water. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 16(104), 235–248 (1933)Google Scholar
  147. 147.
    Mørch, K.A.: Cavitation inception from bubble nuclei. Interface Focus 5(5), 20150006 (2015)Google Scholar
  148. 148.
    Nagrath, S., Jansen, K., Lahey Jr, R.T., Akhatov, I.: Hydrodynamic simulation of air bubble implosion using a level set approach. J. Comput. Phys. 215 (1), 98–132 (2006)MathSciNetzbMATHGoogle Scholar
  149. 149.
    Nigmatulin, R.I., Khabeev, N.S., Nagiev, F.B.: Dynamics, heat and mass transfer of vapour-gas bubbles in a liquid. Int. J. Heat Mass Transfer 24(6), 1033–1044 (1981)zbMATHGoogle Scholar
  150. 150.
    Obreschkow, D., Tinguely, M., Dorsaz, N., Kobel, P., De Bosset, A., Farhat, M.: Universal scaling law for jets of collapsing bubbles. Phys. Rev. Lett. 107(20), 204501 (2011)Google Scholar
  151. 151.
    Olsson, E., Kreiss, G.: A conservative level set method for two phase flow. J. Comput. Phys. 210(1), 225–246 (2005)MathSciNetzbMATHGoogle Scholar
  152. 152.
    Omta, R.: Oscillations of a cloud of bubbles of small and not so small amplitude. J. Acoust. Soc. Am. 82(3), 1018–1033 (1987)Google Scholar
  153. 153.
    Passandideh-Fard, M., Roohi, E.: Transient simulations of cavitating flows using a modified volume-of-fluid (vof) technique. International Journal of Computational Fluid Dynamics 22(1–2), 97–114 (2008)zbMATHGoogle Scholar
  154. 154.
    Pelanti, M., Shyue, K.M.: A mixture-energy-consistent six-equation two-phase numerical model for fluids with interfaces, cavitation and evaporation waves. J. Comput. Phys. 259, 331–357 (2014)MathSciNetzbMATHGoogle Scholar
  155. 155.
    Pendar, M.R., Roohi, E.: Cavitation characteristics around a sphere: an les investigation. Int. J. Multiphase Flow 98, 1–23 (2018)MathSciNetGoogle Scholar
  156. 156.
    Petitpas, F., Massoni, J., Saurel, R., Lapebie, E., Munier, L.: Diffuse interface model for high speed cavitating underwater systems. Int. J. Multiphase Flow 35(8), 747–759 (2009)Google Scholar
  157. 157.
    Plesset, M.S.: The dynamics of cavitation bubbles. J. Appl. Mech. 16, 277–282 (1949)Google Scholar
  158. 158.
    Plesset, M.S., Chapman, R.B.: Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary. J. Fluid Mech. 47(2), 283–290 (1971)Google Scholar
  159. 159.
    Plesset, M.S., Zwick, S.A.: The growth of vapor bubbles in superheated liquids. J. App. Phys. 25(4), 493–500 (1954)MathSciNetzbMATHGoogle Scholar
  160. 160.
    Popinet, S., Zaleski, S.: Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech. 464, 137–163 (2002)zbMATHGoogle Scholar
  161. 161.
    Preston, A.T., Colonius, T., Brennen, C.E.: A numerical investigation of unsteady bubbly cavitating nozzle flows. Phys. Fluids 14, 300 (2002)zbMATHGoogle Scholar
  162. 162.
    Preston, A.T., Colonius, T., Brennen, C.E.: A reduced order model of diffusive effects on the dynamics of bubbles. Phys. Fluids 19(123302), 1–19 (2007)zbMATHGoogle Scholar
  163. 163.
    Prosperetti, A.: A generalization of the Rayleigh-Plesset equation of bubble dynamics. Phys. Fluids 25(3), 409–410 (1982)zbMATHGoogle Scholar
  164. 164.
    Prosperetti, A.: The speed of sound in a gas-vapour bubbly liquid. Interface Focus, 5(5) (2015)Google Scholar
  165. 165.
    Prosperetti, A., Lezzi, A.: Bubble dynamics in a compressible liquid. Part 1. First-order theory. J. Fluid Mech. 168, 457–478 (1986)zbMATHGoogle Scholar
  166. 166.
    Rayleigh, L.: On the pressure developed in a liquid during the collapse of a spherical cavity. Phil. Mag. 34, 94 (1917)zbMATHGoogle Scholar
  167. 167.
    Richards, W., Lomis, A.: J. Am. Chem. Soc. 49, 3086 (1927)Google Scholar
  168. 168.
    Rodríguez-Rodríguez, J., Casado-Chacón, A., Fuster, D.: Physics of beer tapping. Phys. Rev. Lett. 113(21), 214501 (2014)Google Scholar
  169. 169.
    Roohi, E., Pendar, M.R., Rahimi, A.: Simulation of three-dimensional cavitation behind a disk using various turbulence and mass transfer models. Appl. Math. Model. 40(1), 542–564 (2016)MathSciNetGoogle Scholar
  170. 170.
    Roohi, E., Zahiri, A.P., Passandideh-Fard, M.: Numerical simulation of cavitation around a two-dimensional hydrofoil using vof method and les turbulence model. Appl. Math. Model. 37(9), 6469–6488 (2013)MathSciNetzbMATHGoogle Scholar
  171. 171.
    Rossinelli, D., Hejazialhosseini, B., Hadjidoukas, P., Bekas, C., Curioni, A., Bertsch, A., Futral, S., Schmidt, S., Adams, N., Koumoutsakos, P.: 11 pflop/S simulations of cloud cavitation collapse. In: 2013 International Conference for High Performance Computing, Networking, Storage and Analysis (SC), pp 1–13. IEEE (2013)Google Scholar
  172. 172.
    Saito, Y., Takami, R., Nakamori, I., Ikohagi, T.: Numerical analysis of unsteady behavior of cloud cavitation around a naca0015 foil. Comput. Mech. 40(1), 85 (2007)zbMATHGoogle Scholar
  173. 173.
    Saurel, R., Abgrall, R.: A multiphase godunov method for compressible multifluid and multiphase flows. J. Comput. Phys. 150(2), 425–467 (1999)MathSciNetzbMATHGoogle Scholar
  174. 174.
    Saurel, R., Lemetayer, O.: A multiphase model for compressible flows with interfaces, shocks, detonation waves and cavitation. J. Fluid Mech. 431, 239–271 (2001)zbMATHGoogle Scholar
  175. 175.
    Saurel, R., Pantano, C.: Diffuse-interface capturing methods for compressible two-phase flows. Annu. Rev. Fluid Mech. 50(1), 105–130 (2018)MathSciNetzbMATHGoogle Scholar
  176. 176.
    Saurel, R., Petitpas, F., Berry, R.A.: Simple and efficient relaxation methods for interfaces separating compressible fluids, cavitating flows and shocks in multiphase mixtures. J. Comput. Phys. 228(5), 1678–1712 (2009)MathSciNetzbMATHGoogle Scholar
  177. 177.
    Schmidmayer, K., Petitpas, F., Daniel, E., Favrie, N., Gavrilyuk, S.: A model and numerical method for compressible flows with capillary effects. J. Comput. Phys. 334, 468–496 (2017)MathSciNetzbMATHGoogle Scholar
  178. 178.
    Schnerr, G.H., Sauer, J.: Physical and numerical modeling of unsteady cavitation dynamics. In: Fourth International Conference on Multiphase Flow, New Orleans, USA, vol. 1 (2001)Google Scholar
  179. 179.
    Schnerr, G.H., Sezal, I.H., Schmidt, S.J.: Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics. Phys. Fluids 20(4), 040703 (2008)zbMATHGoogle Scholar
  180. 180.
    Senocak, I., Shyy, W.: A pressure-based method for turbulent cavitating flow computations. J. Comput. Phys. 176(2), 363–383 (2002)zbMATHGoogle Scholar
  181. 181.
    Shyue, K.M., Xiao, F.: An eulerian interface sharpening algorithm for compressible two-phase flow: the algebraic thinc approach. J. Comput. Phys. 268, 326–354 (2014)MathSciNetzbMATHGoogle Scholar
  182. 182.
    Shyy, W., Thakur, S.S., Ouyang, H., Liu, J., Blosch, E.: Computational Techniques for Complex Transport Phenomena. Cambridge University Press, Cambridge (2005)zbMATHGoogle Scholar
  183. 183.
    Singhal, A., Athavale, M.M., Li, H., Jiang, Y.: Mathematical basis and validation of the full cavitation model. J. Fluids Eng. 124(3), 617–624 (2002)Google Scholar
  184. 184.
    Singhal, A.K.: Multi-dimensional simulation of cavitating flows using a pdf model of phase change. In: Proceedings ASME FED Meeting, Vancouver, Canada, 1997 (1997)Google Scholar
  185. 185.
    Smeulders, D.M.J., Van Dongen, M.E.H.: Wave propagation in porous media containing a dilute gas–liquid mixture: theory and experiments. J. Fluid Mech. 343 (-1), 351–373 (1997)MathSciNetzbMATHGoogle Scholar
  186. 186.
    Smith, W.R., Wang, Q.X.: Radiative decay of the nonlinear oscillations of an adiabatic spherical bubble at small mach number. J. Fluid Mech. 837, 1–18 (2018)MathSciNetzbMATHGoogle Scholar
  187. 187.
    Sparks, R., Stephen, J.: The dynamics of bubble formation and growth in magmas: a review and analysis. J. Volcanol. Geotherm. Res. 3(1-2), 1–37 (1978)Google Scholar
  188. 188.
    Storey, B.D., Szeri, A.J.: Water vapour, sonoluminiscence and sonochemistry. Proc. R. Soc. Lond. A 456, 1685–1709 (2000)Google Scholar
  189. 189.
    Supponen, O., Obreschkow, D., Tinguely, M., Kobel, P., Dorsaz, N., Farhat, M.: Scaling laws for jets of single cavitation bubbles. J. Fluid Mech. 802, 263–293 (2016)Google Scholar
  190. 190.
    Tiwari, A., Freund, J.B., Pantano, C.: A diffuse interface model with immiscibility preservation. J. Comput. Phys. 252, 290–309 (2013)MathSciNetzbMATHGoogle Scholar
  191. 191.
    Tiwari, A., Pantano, C., Freund, J.B.: Growth-and-collapse dynamics of small bubble clusters near a wall. J. Fluid Mech. 775, 1–23 (2015)MathSciNetzbMATHGoogle Scholar
  192. 192.
    Tomar, G., Fuster, D., Zaleski, S., Popinet, S.: Multiscale simulations of primary atomization using gerris. Comp. and Fluids 39(4), 1864–1874 (2010)zbMATHGoogle Scholar
  193. 193.
    Tomita, Y., Shima, A.: On the behavior of a spherical bubble and the impulse pressure in a viscous compressible liquid. JSME Bulletin 20, 1453–1460 (1977)Google Scholar
  194. 194.
    Tseng, C.C., Shyy, W.: Modeling for isothermal and cryogenic cavitation. Int. J. Heat Mass Transfer 53(1-3), 513–525 (2010)zbMATHGoogle Scholar
  195. 195.
    Van Wijngaarden, L.: On the collective collapse of a large number of gas bubbles in water. In: Applied Mechanics, pp. 854–861. Springer (1966)Google Scholar
  196. 196.
    Van Wijngaarden, L.: On the equations of motion for mixtures of liquid and gas bubbles. J. Fluid Mech. 33(3), 465–474 (1968)zbMATHGoogle Scholar
  197. 197.
    Venkateswaran, S., Lindau, J.W., Kunz, R.F., Merkle, C.L.: Computation of multiphase mixture flows with compressibility effects. J. Comput. Phys. 180(1), 54–77 (2002)zbMATHGoogle Scholar
  198. 198.
    Vogelaar, B., Smeulders, D., Harris, J.: Exact expression for the effective acoustics of patchy-saturated rocks. Geophysics 75(4), N87 (2010)Google Scholar
  199. 199.
    Wang, G., Ostoja-Starzewski, M.: Large eddy simulation of a sheet/cloud cavitation on a naca0015 hydrofoil. Appl. Math. Model. 31(3), 417–447 (2007)zbMATHGoogle Scholar
  200. 200.
    Wang, G., Senocak, I., Shyy, W., Ikohagi, T., Cao, S.: Dynamics of attached turbulent cavitating flows. Prog. Aerosp. Sci. 37(6), 551–581 (2001)Google Scholar
  201. 201.
    Wang, Q.X., Blake, R.: Non-spherical bubble dynamics in a compressible liquid. part 1. travelling acoustic wave. J. Fluid Mech. 659, 191–224 (2010)MathSciNetzbMATHGoogle Scholar
  202. 202.
    Wang, Q.X.: Non-spherical bubble dynamics of underwater explosions in a compressible fluid. Phys. Fluids 25(7), 072104 (2013)zbMATHGoogle Scholar
  203. 203.
    Wang, Q.X., Blake, J.R.: Non-spherical bubble dynamics in a compressible liquid. part 2. acoustic standing wave. J. Fluid Mech. 679, 559–581 (2011)MathSciNetzbMATHGoogle Scholar
  204. 204.
    Watanabe, S., Hidaka, T., Horiguchi, H., Furukawa, A., Tsujimoto, Y.: Steady analysis of the thermodynamic effect of partial cavitation using the singularity method. J. Fluids Eng. 129(2), 121–127 (2007)Google Scholar
  205. 205.
    Wood, A.B.: Textbook of Sound. G. Bell, London (1946)Google Scholar
  206. 206.
    Wood, R.W., Loomis, A.L.: Xxxviii. the physical and biological effects of high-frequency sound-waves of great intensity. The London Edinburgh, and Dublin Philosophical Magazine And Journal Of Science 4(22), 417–436 (1927)Google Scholar
  207. 207.
    Xiao, F., Akoh, R., Ii, S.: Unified formulation for compressible and incompressible flows by using multi-integrated moments II: Multi-dimensional version for compressible and incompressible flows. J. Comput. Phys. 213(1), 31–56 (2006)MathSciNetzbMATHGoogle Scholar
  208. 208.
    Xu, N., Apfel, R.E., Khong, A., Hu, X., Wang, L.: Water vapor diffusion effects on gas dynamics in a sonoluminescing bubble. Phys. Rev. Lett. E 68(016309), 1–7 (2003)Google Scholar
  209. 209.
    Yang, Y.X., Wang, Q.X., Keat, T.S.: Dynamic features of a laser-induced cavitation bubble near a solid boundary. Ultrason. Sonochem. 20(4), 1098–1103 (2013)Google Scholar
  210. 210.
    Yao, Z., Xian-Wu, L., Shu-Hong, L., Yu-Lin, W., Hong-Yuan, X.: A thermodynamic cavitation model for cavitating flow simulation in a wide range of water temperatures. Chin. Phys. Lett. 27(1), 016401 (2010)Google Scholar
  211. 211.
    Yasui, K., Tuziuti, T., Sivakumar, M., Iida, Y.: Theoretical study of single-bubble sonochemistry. J. Chem Phys. 122(224706), 1–12 (2005)Google Scholar
  212. 212.
    Yavas, O., Leiderer, P., Park, H.K., Grigoropoulos, C.P., Poon, C.C., Tam, A.C.: Enhanced acoustic cavitation following laser-induced bubble formation: Long-term memory effect. Phys. Rev. Lett. 72(13), 2021 (1994)Google Scholar
  213. 213.
    Yu, P.W., Ceccio, S.L., Tryggvason, G.: The collapse of a cavitation bubble in shear flows: a numerical study. Phys. Fluids 7(11), 2608–2616 (1995)zbMATHGoogle Scholar
  214. 214.
    Zeng, Q., Gonzalez-Avila, S.R., Dijkink, R., Koukouvinis, P., Gavaises, M., Ohl, C.D.: Wall shear stress from jetting cavitation bubbles. J. Fluid Mech. 846, 341–355 (2018)MathSciNetzbMATHGoogle Scholar
  215. 215.
    Zeravcic, Z., Lohse, D., Van Saarloos, W.: Collective oscillations in bubble clouds. J. Fluid Mech. 680, 114–149 (2011)zbMATHGoogle Scholar
  216. 216.
    Zhang, D.Z., Prosperetti, A.: Averaged equations for inviscid disperse two-phase flow. J. Fluid Mech. 267, 185–219 (1994)MathSciNetzbMATHGoogle Scholar
  217. 217.
    Zhang, D.Z., Prosperetti, A.: Ensemble phase-averaged equations for bubbly flows. Phys. Fluids 6, 2956–2970 (1994)MathSciNetzbMATHGoogle Scholar
  218. 218.
    Zhang, Y.: A criterion for the fragmentation of bubbly magma based on brittle failure theory. Nature 402(6762), 648 (1999)Google Scholar
  219. 219.
    Zheng, Q., Durben, D.J., Wolf, G.H., Angell, C.A.: Liquids at large negative pressures: water at the homogeneous nucleation limit. Science 254(5033), 829 (1991)Google Scholar
  220. 220.
    Zhu, J., Chen, Y., Zhao, D., Zhang, X.: Extension of the Schnerr–Sauer model for cryogenic cavitation. Eur. J. Mech. B. Fluids 52, 1–10 (2015)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centre National de la Recherche Scientifique, UMR 7190, Institut Jean Le Rond D’AlembertSorbonne UniversitéParisFrance

Personalised recommendations