Advertisement

Modeling of Conjugate Heat Transfer in a Kerosene/Air Spray Flame used for Aeronautical Fire Resistance Tests

  • L. Boulet
  • P. Bénard
  • G. Lartigue
  • V. Moureau
  • S. Didorally
  • N. Chauvet
  • F. Duchaine
Article

Abstract

Airworthiness standards require a fire resistance demonstration for aircraft or helicopter engines to obtain a type certificate. This demonstration relies on tests performed with prototype engine parts in the late stages of the development. In hardest tests, a kerosene standardized flame with imposed burnt gas temperature and heat flux is placed next to the engine casing during a given time. The aim of this work is to provide a better characterization of a kerosene/air certification burner in order to reach a better understanding of the thermal environment during fire tests. To this purpose, Large-Eddy Simulation (LES) of the certification burner is carried out. Spray combustion, forced convection on walls and conduction in the solid parts of the burner are coupled to achieve a detailed description of heat transfer. In a first place, physical aspects involved inside the burner in an adiabatic case are described. Then, differences that exist with a conjugate convective and conductive heat transfer case are analyzed. To a larger extent, the aim is to have a better characterization of the flow impinging the casing and to progress on fire test modeling so as to minimize the risks of test failure.

Keywords

Large-Eddy Simulation (LES) Conjugate Heat Transfer (CHT) Lagrangian particles Turbulent combustion Kerosene-Air certification burner Fire resistance test 

Notes

Acknowledgements

This work was granted access to the HPC resources from CINES (Centre Informatique National de l’Enseignement Superieur), from IDRIS (Institut du Developpement et des Ressources en Informatique Scientifique) and from TGCC-CEA under the allocations x20172b6880 made by GENCI (Grand Equipement National de Calcul Intensif). It was also granted CPU time by CRIANN under the allocation 2012006.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Certification specifications for engines. Annex to ED decision 2010/015/R amendment 3 european aviation safety agency (2010)Google Scholar
  2. 2.
    ISO 2685:1998: Aircraft - environmental conditions and test procedures for airborne equipment - resistance to fire in designated fire zones. Technical report, The International Organization for Standardization (ISO) (1998)Google Scholar
  3. 3.
    US Department of Transportation. Powerplant installation and propulsion system component fire protection test methods, standards and criteria. Technical report, Federal Aviation Administration: Advisory Circular (AC) (1990)Google Scholar
  4. 4.
    Ochs, R.I.: Design and Analysis of the Federal Aviation Administration Next Generation Fire Test Burner. PhD thesis at Rutgers University, USA (2013)Google Scholar
  5. 5.
    Le Neve, S.: AC20-135/ ISO 2685, Fire tests on components used in fire zones. Comparison of gas burner to oil burner. Proceedings of the FAA Materials Meeting, Atlantic City (2008)Google Scholar
  6. 6.
    Tranchard, P., Samyn, F., Duquesne, S., Thomas, M., Estèbe, B., Montès, J.L., Bourbigot, S.: Fire behaviour of carbon fibre epoxy composite for aircraft: Novel test bench and experimental study. J. Fire Sci. 33(3), 247–266 (2015)CrossRefGoogle Scholar
  7. 7.
    Kao, Y.H., Tambe, S.B., Ochs, R., Summer, S., Jeng, S.M.: Experimental study of the burner for FAA fire test: Nexgen burner. Fire Mater. 41(7), 898–907 (2017)CrossRefGoogle Scholar
  8. 8.
    Neely, A., Ireland, P.: Pilot study to investigate novel experimental and theoretical fire-event modelling techniques. AIAA, 37th ASME, vol. 99–0326 (1999)Google Scholar
  9. 9.
    Sikoutris, D.E., Vlachos, D.E., Kostopoulos, V., Jagger, S., Ledin, S.: Fire burnthrough response of CFRP aerostructures. Numerical investigation and experimental verification. Appl. Compos. Mater. 19(2), 141–159 (2012)CrossRefGoogle Scholar
  10. 10.
    Grange, N., Chetehouna, K., Gascoin, N., Senave, S.: Numerical investigation of the heat transfer in an aeronautical composite material under fire stress. Fire Saf. J. 80, 56–63 (2016)CrossRefGoogle Scholar
  11. 11.
    Moureau, V., Domingo, P., Vervisch, L.: Design of a massively parallel CFD code for complex geometries. C. R. Mécanique 339, 141–148 (2011)CrossRefzbMATHGoogle Scholar
  12. 12.
    Pierce, C.D., Moin, P.: Progress-variable approach for large eddy simulation of non-premixed turbulent combustion. J. Fluid Mech. 504, 73–97 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Chorin, A.J.: Numerical solution of the Navier-Stokes equations. Math. Comput. 22(104), 745–762 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kim, J., Moin, P.: Application of a fractional-step method to incompressible navier-stokes equations. J. Comput. Phys. 59(2), 308–323 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kraushaar, M.: Application of the Compressible and Low-Mach Number Approaches to Large-Eddy Simulation of Turbulent Flows in Aero-Engines. FRANCE, PhD thesis at CERFACS of Toulouse (2011)Google Scholar
  16. 16.
    Edwards, T., Maurice, L.Q.: Surrogate mixtures to represent complex aviation and rocket fuels. J. Propul. Power 17(2), 461–466 (2001)CrossRefGoogle Scholar
  17. 17.
    Orain, M., Baranger, P., Ledier, C., Apeloig, J., Grisch, F.: Fluorescence spectroscopy of kerosene vapour at high temperatures and pressures: potential for gas turbines measurements. Appl. Phys. B 116(3), 729–745 (2014)CrossRefGoogle Scholar
  18. 18.
    Rachner, M.: Die Stoffeigenschaften von Kerosin Jet A-1. DLR-Mitteilung 152, 98–01 (1998). [in German]Google Scholar
  19. 19.
    Vovelle, C., Delfau, J.L., Reuillon, M.: Formation of aromatic hydrocarbons in decane and kerosene flames at reduced pressure. Soot Formation Combust 59, 50–65 (1994)CrossRefGoogle Scholar
  20. 20.
    Riesmeier, E., Honnet, S., Peters, N.: Flamelet modeling of pollutant formation in a gas turbine combustion chamber using detailed chemistry for a kerosene model fuel. J. Eng. Gas Turbines Power. 126(4), 899–905 (2004)CrossRefGoogle Scholar
  21. 21.
    Balès-Guéret, C., Cathonnet, M., Boettner, J.C., Gaillard, F.: Experimental study and kinetic modeling of higher hydrocarbon oxidation in a jet-stirred flow reactor. Energy Fuels 6(2), 189–194 (1992)CrossRefGoogle Scholar
  22. 22.
    Elliott, L., Ingham, D.B., Kyne, A.G., Mera, N.S., Pourkashanian, M., Whittaker, S.: Reaction mechanism reduction and optimisation for modelling aviation fuel oxidation using standard and hybrid genetic algorithms. Comput. Chem. Eng. 30 (5), 889–900 (2006)CrossRefGoogle Scholar
  23. 23.
    Slavinskaya, N.A., Zizin, A., Aigner, M.: On model design of a surrogate fuel formulation. J. Eng. Gas Turbines Power 132(11), 111501 (2010)CrossRefGoogle Scholar
  24. 24.
    Anand, K., Ra, Y., Reitz, R.D., Bunting, B.: Surrogate model development for fuels for advanced combustion engines. Energy Fuels 25(4), 1474–1484 (2011)CrossRefGoogle Scholar
  25. 25.
    Schulz, W.D.: Oxidation products of a surrogate JP-8 fuel. Preprints-american Chemical Society. Div. Pet. Chem. 37(2), 383–392 (1992)MathSciNetGoogle Scholar
  26. 26.
    Delfau, J.L., Bouhria, M., Reuillon, M., Sanogo, O., Akrich, R., Vovelle, C.: Experimental and computational investigation of the structure of a sooting decane-O2-Ar flame. Proc. Combust. Inst. 23, 1567–1572 (1991)CrossRefGoogle Scholar
  27. 27.
    Cathonnet, M., Balès-Guéret, C., Chakir, A., Dagaut, P., Boettner, J.C., Schultz, J.L.: On the Use of Detailed Chemical Kinetics to Model Aeronautical Combustors Performances. Proc. of the Third European Propulsion Forum, EPF91, ONERA Paris, AAAF (1992)Google Scholar
  28. 28.
    Dagaut, P.: On the kinetics of hydrocarbons oxidation from natural gas to kerosene and diesel fuel. Phys. Chem. Chem. Phys. 4(11), 2079–2094 (2002)CrossRefGoogle Scholar
  29. 29.
    Luche, J., Reuillon, M., Boettner, J.C., Cathonnet, M.: Reduction of large detailed kinetic mechanisms: application to kerosene/air combustion. Combust. Sci. Technol. 176(11), 1935–1963 (2004)CrossRefGoogle Scholar
  30. 30.
    Franzelli, B., Riber, E., Sanjosé, M., Poinsot, T.: A two-step chemical scheme for kerosene-air premixed flames. Combust. Flame 157(7), 1364–1373 (2010)CrossRefGoogle Scholar
  31. 31.
    Bénard, P., Moureau, V., Lartigue, J., D’Angelo, Y.: Large-eddy Simulation of a hydrogen enriched methane/air meso-scale combustor. Int. J. Hydrog. Energy 42 (4), 2397–2410 (2017)CrossRefGoogle Scholar
  32. 32.
    Boussinesq, J.: Théorie de l’écoulement tourbillonant. Mem. Pres. Acad. Sci. 42, 23–46 (1877)Google Scholar
  33. 33.
    Germano, M., Piomelli, U., Moin, P., Cabot. W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. (1989-1993) 3(7), 1760–1765 (1991)CrossRefzbMATHGoogle Scholar
  34. 34.
    Butler, T.D., O’Rourke, P.J.: A numerical method for two dimensional unsteady reacting flows. Proc. Combust. Inst. 16, 1503–1515 (1977)CrossRefGoogle Scholar
  35. 35.
    Légier, J.P., Poinsot, T., Veynante, D.: Dynamically thickened flame les model for premixed and nonpremixed turbulent combustion. Proc. of the Summer Program, 157–168 (2000)Google Scholar
  36. 36.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion Part I: non-dynamic formulation and initial tests. Combust. Flame 131(1-2), 159–180 (2002)CrossRefGoogle Scholar
  37. 37.
    Guédot, L.: Développement de méthodes numériques pour la caractérisation des grandes structures tourbillonnaires dans les brûleurs aéronautiques: application aux systèmes d’injection multi-points. PhD thesis at Institut National des Sciences appliquées de Rouen, France (2015)Google Scholar
  38. 38.
    Schiller, L., Naumann, Z.: A drag coefficient correlation. Vdi Zeitung 77(318), 51 (1935)Google Scholar
  39. 39.
    Spalding, D.B.: The combustion of liquid fuels. Proc. Combust. Inst. 4, 847–864 (1953)CrossRefGoogle Scholar
  40. 40.
    Abramzon, B., Sirignano, W.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)CrossRefGoogle Scholar
  41. 41.
    Kuo, K.: Principles of combustion. Wiley, Hoboken (1986)Google Scholar
  42. 42.
    Sirignano, W.A.: Fluid dynamics and transport of droplets and sprays. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  43. 43.
    Guédot, L., Lartigue, G., Moureau, V.: Modeling and analysis of the interactions of coherent structures with a spray flame in a swirl burner. Turbul. Interactions 135, 15–26 (2015)Google Scholar
  44. 44.
    Farcy, B., Vervisch, L., Domingo, P.: Large eddy simulation of selective non-catalytic reduction (SNCR): a downsizing procedure for simulating nitric-oxide reduction units. Chem. Eng. Sci. 139, 285–303 (2016)CrossRefGoogle Scholar
  45. 45.
    Esclapez, L., Ma, P.C., Mayhew, E., Xu, R., Stouffer, S., Lee, T., Ihme, M.: Fuel effects on lean blow-out in a realistic gas turbine combustor. Combust. Flame 181, 82–99 (2017)CrossRefGoogle Scholar
  46. 46.
    Okong’o, N.A., Bellan, J.: Consistent large-eddy simulation of a temporal mixing layer laden with evaporating drops. Part 1: direct numerical simulation, formulation and a priori analysis. J. Fluid Mech. 499, 1–47 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    Bini, M., Jones, W.: Particle acceleration in turbulent flows: a class of nonlinear stochastic models for intermittency. Phys. Fluids 19(3), 1–9 (2007)Google Scholar
  48. 48.
    Hannebique, G., Sierra, P., Riber, E., Cuenot, B.: Large-eddy simulation of reactive two-phase flow in an aeronautical multipoint burner. Flow Turbul. Combust. 90(2), 449–469 (2013)CrossRefGoogle Scholar
  49. 49.
    Sanjosé, M., Senoner, J.M., Jaegle, F., Cuenot, B., Moreau, S., Poinsot, T.: Fuel injection model for euler-euler and euler-lagrange large-eddy simulations of an evaporating spray inside an aeronautical combustor. Int. J. Multiphase Flow 37(5), 514–529 (2011)CrossRefGoogle Scholar
  50. 50.
    Fourier, J.: Théorie analytique de la chaleur. Chez Firmin Didot, père et fils (1822)Google Scholar
  51. 51.
    Malandain, M., Maheu, N., Moureau, V.: Optimization of the deflated Conjugate Gradient algorithm for the solving of elliptic equations on massively parallel machines. J. Comput. Phys. 238, 32–47 (2012)MathSciNetCrossRefGoogle Scholar
  52. 52.
    Luo, J., Razinsky, E.H.: Conjugate heat transfer analysis of a cooled turbine vane using the v2f turbulence model. J. Turbomach. 129(4), 773–781 (2007)CrossRefGoogle Scholar
  53. 53.
    He, L., Oldfield, M.L.G.: Unsteady conjugate heat transfer modeling. J. Turbomach. 133(3), 031022 (2011)CrossRefGoogle Scholar
  54. 54.
    York, W.D., Leylek, J.H.: Three-dimensional conjugate heat transfer simulation of an internally-cooled gas turbine vane. ASME Turbo Expo 2003, collocated with the 2003 International Joint Power Generation Conference, GT2003-38551, pp. 351–360 (2003)Google Scholar
  55. 55.
    Duchaine, F., Corpron, A., Pons, L., Moureau, V., Nicoud, F., Poinsot, T.: Development and assessment of a coupled strategy for conjugate heat transfer with large eddy simulation: application to a cooled turbine blade. Int. J. Heat Fluid Flow. 30(6), 1129–1141 (2009)CrossRefGoogle Scholar
  56. 56.
    Jauré, S., Duchaine, F., Staffelbach, G., Gicquel, L.Y.M.: Massively parallel conjugate heat transfer methods relying on large eddy simulation applied to an aeronautical combustor. Comput. Sci. Discov. 6(1), 015008 (2013)CrossRefGoogle Scholar
  57. 57.
    Florenciano, J.L., Bruel, P.: LES Fluid-solid coupled calculations for the assessment of heat transfer coefficient correlations over multi-perforated walls. Aerosp. Sci. Technol. 53, 61–73 (2016)CrossRefGoogle Scholar
  58. 58.
    Scholl, S., Verstraete, T., Duchaine, F., Gicquel, L.: Conjugate heat transfer of a rib-roughened internal turbine blade cooling channel using large eddy simulation. Int. J. Heat Fluid Flow. 61, 650–664 (2016)CrossRefGoogle Scholar
  59. 59.
    Misdariis, A., Vermorel, O., Poinsot, T.: LES Of knocking in engines using dual heat transfer and two-step reduced schemes. Combust. Flame 162(11), 4304–4312 (2015)CrossRefGoogle Scholar
  60. 60.
    Giles, M.B.: Stability analysis of numerical interface conditions in fluid-structure thermal analysis. Int. J. Numer. Methods Fluids 25(4), 421–436 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    Felippa, C.A., Park, K.C., Farhat, C.: Partitioned analysis of coupled mechanical systems. Comput. Methods Appl. Mech. Eng. 190(24), 3247–3270 (2001)CrossRefzbMATHGoogle Scholar
  62. 62.
    Duchaine, F., Jauré, S., Poitou, D., Quémerais, E., Staffelbach, G., Morel, T., Gicquel, L.: Analysis of high performance conjugate heat transfer with the OpenPALM coupler. Comput. Sci. Discov. 8(1), 015003 (2015)CrossRefGoogle Scholar
  63. 63.
    Shapiro, R.: Linear filtering. Math. Comput. 29(132), 1094–1097 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Maheu, N., Moureau, V., Domingo, P.: Large-eddy simulations of flow and heat transfer around a low-Mach number turbine blade. Proc. of the Summer Program, 137–146 (2012)Google Scholar
  65. 65.
    Nguyen, P.D., Moureau, V., Vervisch, L., Perret, N.: A massively parallel solution strategy for efficient thermal radiation simulation. J. Phys. Conf. Ser. 369(1), 012017 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.CORIA, CNRS UMR 6614Normandie Université, INSA and University of RouenSaint-Étienne-du-RouvrayFrance
  2. 2.SAFRAN Aircraft Engines VillarocheRond Point René RavaudRéauFrance
  3. 3.SAFRAN Helicopter EnginesBordesFrance
  4. 4.CERFACSCedex 01France

Personalised recommendations