Advertisement

Large-Eddy Simulation of the Unsteady Full 3D Rim Seal Flow in a One-Stage Axial-Flow Turbine

  • Alexej Pogorelov
  • Matthias Meinke
  • Wolfgang Schröder
Article

Abstract

The flow field in a complete one-stage axial-flow turbine with 30 stator and 62 rotor blades is investigated by large-eddy simulation (LES). To solve the compressible Navier-Stokes equations, a massively parallelized finite-volume flow solver based on an efficient Cartesian cut-cell/level-set approach, which ensures a strict conservation of mass, momentum and energy, is used. This numerical method contains two adaptive Cartesian meshes, one mesh to track the embedded surface boundaries and a second mesh to resolve the fluid domain and to solve the conservation equations. The overall approach allows large scale simulations of turbomachinery applications with multiple relatively moving boundaries in a single frame of reference. The relative motion of the geometries is described by a kinematic motion level-set interface method. The focus of the numerical analysis is on the flow inside the rim seal between the stator and the rotor disks. Full \(360^{\circ }\) computations of the turbine stage are performed for two rim seal configurations. First, the impact of the mesh resolution on the LES results is analyzed for the single lip rim seal configuration. Second, the LES results are compared to experimental data, followed by a detailed analysis of the unsteady flow field. For the single lip rim seal configuration, two modes unrelated to the rotor frequency and its harmonics are identified inside the rotor-stator wheel space, where the first more dominant mode shows a major impact on the ingress of the hot gas into the rotor-stator wheel space. The second mode is a counter-rotating mode which results from the interaction of the first mode with the flow field downstream of the stator blades. Third, at the same operating condition a modified configuration with a double lip rim seal is investigated and compared to the reference configuration to demonstrate the impact of the rim seal geometry on the overall flow field. The additional lip on the rotor disk damps the aforementioned modes and reduces the ingress of the hot gas resulting in an increase of the cooling effectiveness inside the rotor-stator wheel space, which is in a good agreement with the experimental results.

Keywords

Turbulent flow Large-eddy simulation Cut-cell/level-set method Rim seal flow Rotor-stator wheel space Rotating boundary 

Notes

Acknowledgements

This study was funded under Grant No. 19198 N by the German Federal Ministry of Economics and Technology via the Arbeitsgemeinschaft industrieller Forschungsvereinigungen Otto von Guericke e.V. (AiF). The authors also wish to thank the High Performance Computing Center Stuttgart (HLRS) and the Jülich Supercomputing Center (JSC) for providing the computing resources.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Owen, J.M.: Prediction of ingestion through turbine rim seals— part ii: externally induced and combined ingress. ASME J. Turbomach. 133(3), 031006 (2011)CrossRefGoogle Scholar
  2. 2.
    Owen, J.M.: Prediction of ingestion through turbine rim seals— part i: rotationally induced ingress. ASME J. Turbomach. 133(3), 031005 (2011)CrossRefGoogle Scholar
  3. 3.
    Owen, J.M.: Theoretical modelling of hot gas ingestion through turbine rim seals. Propul. Power Res. 1(1), 1–11 (2012)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bayley, F.J., Owen, J.M.: Flow between a rotating and a stationary disc. Aeronaut. Q. 20(4), 333–354 (1969)CrossRefGoogle Scholar
  5. 5.
    Bayley, F.J., Owen, J.M.: Fluid dynamics of a shrouded disk system with a radial outflow of coolant. J. Eng. Power 92(3), 335–341 (1970)CrossRefGoogle Scholar
  6. 6.
    Bhavnani, S.H., Khilnani, V.I., Tsai, L.-C., Khodadadi, J.M., Goodling, J.S.: Effective sealing of a disk cavity using a double-toothed rim seal. ASME Paper No. 92-GT-379 (1992)Google Scholar
  7. 7.
    Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part i: the behavior of simple shrouded rotating-disk systems in quiescent environment. Int. J. Heat Fluid Flow 9(2), 98–105 (1988)CrossRefGoogle Scholar
  8. 8.
    Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part ii: The performance of simple seals in a quasi-axisymmetric external flow. Int. J. Heat Fluid Flow 9(2), 106–112 (1988)CrossRefGoogle Scholar
  9. 9.
    Phadke, U.P., Owen, J.M.: Aerodynamic aspects of the sealing of gas-turbine rotor-stator systems: part iii: the effects of nonaxisymmetric external flow on seal performance. Int. J. Heat Fluid Flow 9(2), 113–117 (1988)CrossRefGoogle Scholar
  10. 10.
    Bohn, D., Wolff, M.: Improved formulation to determine minimum sealing flow – cw, min – for different sealing configurations. ASME Paper No. GT2003-38465 (2003)Google Scholar
  11. 11.
    Teuber, R., Li, Y.S., Maltson, J., Wilson, M., Lock, G., Owen, J.M.: Computational extrapolation of turbine sealing effectiviness from test rig to engine conditions. ASME Paper No. GT2012-68490 (2012)Google Scholar
  12. 12.
    Owen, J.M., Pountney, O., Lock, G.: Prediction of ingress through turbine rim seals—part ii: combined ingress. ASME J. Turbomach. 134(3), 031013 (2012)CrossRefGoogle Scholar
  13. 13.
    Owen, J.M., Zhou, K., Pountney, O., Wilson, M., Lock, G.: Prediction of ingress through turbine rim seals—part i: externally induced ingress. ASME J. Turbomach. 134(3), 031012 (2012)CrossRefGoogle Scholar
  14. 14.
    Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals—part iii: single and double seals. ASME J. Turbomach. 135(5), 051011 (2013)CrossRefGoogle Scholar
  15. 15.
    Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 1: externally-induced ingress. ASME J. Turbomach. 135(2), 021012 (2013)CrossRefGoogle Scholar
  16. 16.
    Sangan, C., Pountney, O., Zhou, K., Wilson, M., Owen, J.M., Lock, G.: Experimental measurements of ingestion through turbine rim seals, part 2: rotationally-induced ingress. ASME J. Turbomach. 135(2), 021013 (2013)CrossRefGoogle Scholar
  17. 17.
    Dunn, D.M., Zhou, D.W., Squires, K.D., Roy, R.P., Saha, K., Moon, H.K.: Flow field in a single-stage model air turbine rotor-stator cavity with pre-swirled purge flow. ASME Paper No. GT2010-22869 (2010)Google Scholar
  18. 18.
    Hills, N.J., Chew, J.W., Turner, A.B.: Computational and mathematical modeling of turbine rim seal ingestion. ASME J. Turbomach. 124(2), 306–315 (2002)CrossRefGoogle Scholar
  19. 19.
    Jakoby, R., Zierer, T., Lindblad, K., Larsson, J., Devito, L., Bohn, D.E., Funcke, J., Decker, A.: Numerical simulation of the unsteady flow field in an axial gas turbine rim seal configuration. ASME Paper No. GT2004-53829 (2004)Google Scholar
  20. 20.
    Johnson, B.V., Jacoby, R., Bohn, D., Cunat, D.: A method for estimating the influence of time-dependent vane and blade pressure fields on turbine rim seal ingestion. ASME J. Turbomach. 131(2), 021005 (2009)CrossRefGoogle Scholar
  21. 21.
    Julien, S., Lefrancois, J., Dumas, G., Boutet-Blais G., Lapointe, S., Caron, J.-F.: Simulations of flow ingestion and related structures in a turbine disk cavity. ASME Paper No. GT2010-22729 (2010)Google Scholar
  22. 22.
    Laskowski, G.M., Bunker, R.S., Bailey, J.C., Kapetanovic, S., Itzel, G.M., Sullivan, M.A., Farrell, T.R.: An investigation of turbine wheelspace cooling flow interactions with a transonic hot gas path—part ii: Cfd simulations. ASME J. Turbomach. 133(4), 041020 (2011)CrossRefGoogle Scholar
  23. 23.
    Mirzamoghadam, A.V., Heitland, G., Hosseinu, K.M.: The effect of annulus performance parameters on rotor-stator cavity sealing flow. ASME Paper No. GT2009-59380 (2009)Google Scholar
  24. 24.
    Mirzamoghadam, A.V., Heitland, G., Morris, M.C., Smoke, J., Malak, M., Howe, J.: 3d cfd ingestion evaluation of a high pressure turbine rim seal disk cavity. ASME Paper No. GT2008-50531 (2008)Google Scholar
  25. 25.
    Rabs, M., Benra, F.-K., Dohmen, H.J., Schneider, O.: Investigation of flow instabilities near the rim cavity of a 1.5 stage gas turbine. ASME Paper No. GT2009-59965 (2009)Google Scholar
  26. 26.
    Wang, C.-Z., Johnson, B.V., Jong, F.D., Vashist, T.K., Dutta, R.: Comparison of flow characteristics in axial-gap seals for close- and wide-spaced turbine stages. ASME Paper No. GT2007-27909 (2007)Google Scholar
  27. 27.
    Zhou, D.W., Roy, R.P., Wang, C.-Z., Glahn, J.A.: Main gas ingestion in a turbine stage for three rim cavity configurations. ASME J. Turbomach. 133(3), 031023 (2011)CrossRefGoogle Scholar
  28. 28.
    O’Mahoney, T.S.D., HiIIs, N.J., Chew, J.W., Scanlon, T.: Large-eddy simulation of rim seal ingestion. ASME Paper No. GT2010-22962 (2010)Google Scholar
  29. 29.
    Beard, P.F., Gao, F., Chana, K.S., Chew, J.: Unsteady flow phenomena in turbine rim seals. J. Eng. Gas Turbines Power 139(3), 032501 (2016)CrossRefGoogle Scholar
  30. 30.
    Cao, C., Chew, J.W., Millington, P.R., Hogg, S.I.: Interaction of rim seal and annulus flows in an axial flow turbine. J. Eng. Gas Turbines Power 126(4), 786–793 (2004)CrossRefGoogle Scholar
  31. 31.
    Savov, S.S., Atkins, N.R., Uchida, S.: A comparison of single and double lip rim seal geometries. J. Eng. Gas Turbines Power 139(11), 112601 (2017)CrossRefGoogle Scholar
  32. 32.
    Gao, F., Chew, J., Beard, P.F., Amirante, D., Hills, N.J.: Numerical studies of turbine rim sealing flows on a chute seal configuration. ETC2017-284 (2017)Google Scholar
  33. 33.
    Tyacke, J., Tucker, P., Loveday, R., Vadlamani, N., Watson, R., Naqavi, I., Yang, X.: Large eddy simulation for turbines: methodologies, cost and future outlooks. J. Turbomach. 136(6), 061009 (2013)CrossRefGoogle Scholar
  34. 34.
    Sutherland, W.: The viscosity of gases and molecular force. Philos. Mag. 36(223), 507–531 (1893)CrossRefMATHGoogle Scholar
  35. 35.
    Pogorelov, A., Meinke, M., Schröder, W.: An adaptive cartesian mesh based method to simulate turbulent flows of multiple rotating surfaces. Flow Turbul. Combust.  https://doi.org/10.1007/s10494-017-9827-9 (2017)
  36. 36.
    Lintermann, A., Schlimpert, S., Grimmen, J.H., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on hpc systems. Comput. Methods Appl. Mech. Eng. 277, 131–153 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Boris, J.P., Grinstein, F.F., Oran, E.S., Kolbe, R.L.: New insights into large eddy simulation. Fluid Dyn. Res. 10(4–6), 199–228 (1992)CrossRefGoogle Scholar
  38. 38.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99–164 (1963)CrossRefGoogle Scholar
  39. 39.
    Alkishriwi, N., Meinke, M., Schröder, W.: A large-eddy simulation method for low Mach number flows using preconditioning and multigrid. Comput. Fluids 35 (10), 1126–1136 (2006)CrossRefMATHGoogle Scholar
  40. 40.
    Meinke, M., Schröder, W., Krause, E., Rister, T.: A comparison of second- and sixth-order methods for large-eddy simulation. Comput. Fluids 31(4–7), 695–718 (2002)CrossRefMATHGoogle Scholar
  41. 41.
    Pogorelov, A., Meinke, M., Schröder, W.: Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids 27(7), 075106 (2015)CrossRefGoogle Scholar
  42. 42.
    Pogorelov, A., Meinke, M., Schröder, W.: Effects of tip-gap width on the flow field in an axial fan. Int. J. Heat Fluid Flow 61(Part B), 466–481 (2016).  https://doi.org/10.1016/j.ijheatfluidflow.2016.06.009 CrossRefGoogle Scholar
  43. 43.
    Renze, P., Schröder, W., Meinke, M.: Large-eddy simulation of film cooling flows at density gradients. Int. J. Heat Fluid Flow 29(1), 18–34 (2008)CrossRefMATHGoogle Scholar
  44. 44.
    Rütten, F., Schröder, W., Meinke, M.: Large-eddy simulation of low frequency oscillations of the Dean vortices in turbulent pipe. Phys. Fluids 17(3), 035107 (2005)CrossRefMATHGoogle Scholar
  45. 45.
    Schneiders, L., Günther, C., Meinke, M., Schröder, W.: An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys. 311, 62–86 (2016)MathSciNetCrossRefMATHGoogle Scholar
  46. 46.
    Mavriplis, D.J.: Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes. AIAA 2003-3986 (2003)Google Scholar
  47. 47.
    Berger, M.J., Aftosmis, M.J.: Progress towards a Cartesian cut-cell method for viscous compressible flow. AIAA 2012-1301 (2012)Google Scholar
  48. 48.
    Schneiders, L., Hartmann, D., Meinke, M., Schröder, W.: An accurate moving boundary formulation in cut-cell methods. J. Comput. Phys. 235, 786–809 (2013)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Hartmann, D., Meinke, M., Schröder, W.: A strictly conservative Cartesian cut-cell method for compressible viscous flows on adaptive grids. Comput. Methods Appl. Mech. Eng. 200(9–12), 1038–1052 (2011)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    Jameson, A., Mavriplis, D.: Finite volume solution of the two-dimensional Euler equations on a regular triangular mesh. AIAA J. 24(4), 616–618 (1986)MATHGoogle Scholar
  51. 51.
    Günther, C., Meinke, M., Schröder, W.: A flexible level-set approach for tracking multiple interacting interfaces in embedded boundary methods. Comput. Fluids 102, 182–202 (2014)CrossRefGoogle Scholar
  52. 52.
    Hartmann, D., Meinke, M., Schröder, W.: Differential equation based constrained reinitialization for level set methods. J. Comput. Phys. 227(14), 6821–6845 (2008)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    Hartmann, D., Meinke, M., Schröder, W.: The constrained reinitialization equation for level set methods. J. Comput. Phys. 229(5), 1514–1535 (2010)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Bohn, D., Rudzinski, B., Sürken, N., Gärtner, W.: Experimental and numerical investigation on the influence of rotorblades on hot gas ingestion into the upstream cavity of an axial turbine stage. ASME Paper No. 2000-GT-284 (2000)Google Scholar
  55. 55.
    Freund, J.B.: Proposed inflow/outflow boundary condition for direct computation of aerodynamic sound. AIAA J. 35(4), 740–743 (1997)CrossRefMATHGoogle Scholar
  56. 56.
    Kunnen, R.P.J., Siewert, C., Meinke, M., Schröder, W., Beheng, K.D.: Numerically determined geometric collision kernels in spatially evolving isotropic turbulence relevant for droplets in clouds. Atmos. Res. 127, 8–21 (2013)CrossRefGoogle Scholar
  57. 57.
    Bohn, D., Wolff, M.: Entwicklung von Berechnungsansätzen zur Optimierung von Sperrgassystemen für Rotor/Stator-Kavitäten in Gasturbinen. FVV-Vorhaben Nr.: 067270, Frankfurt (2001)Google Scholar
  58. 58.
    Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69–94 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Forschungszentrum Jülich JARA-High-Performance ComputingJülichGermany

Personalised recommendations