Advertisement

Flow, Turbulence and Combustion

, Volume 101, Issue 2, pp 521–551 | Cite as

Direct Numerical Simulation of Flow over Periodic Hills up to \(\text {Re}_{H}= 10{,}595\)

  • Benjamin KrankEmail author
  • Martin Kronbichler
  • Wolfgang A. Wall
Article

Abstract

We present fully resolved computations of flow over periodic hills at the hill-Reynolds numbers \(\text {Re}_{H}= 5{,}600\) and \(\text {Re}_{H}= 10{,}595\) with the highest fidelity to date. The calculations are performed using spectral incompressible discontinuous Galerkin schemes of \(8^{\text {th}}\) and \(7^{\text {th}}\) order spatial accuracy, \(3^{\text {rd}}\) order temporal accuracy, as well as 34 and 180 million grid points, respectively. We show that the remaining discretization error is small by comparing the results to h- and p-coarsened simulations. We quantify the statistical averaging error of the reattachment length, as this quantity is widely used as an ‘error norm’ in comparing numerical schemes. The results exhibit good agreement with the experimental and numerical reference data, but the reattachment length at \(\text {Re}_{H}= 10{,}595\) is predicted slightly shorter than in the most widely used LES references. In the second part of this paper, we show the broad range of capabilities of the numerical method by assessing the scheme for underresolved simulations (implicit large-eddy simulation) of the higher Reynolds number in a detailed h/p convergence study.

Keywords

Periodic hill flow Incompressible Navier–Stokes equations Direct numerical simulation Large-eddy simulation High-order discontinuous Galerkin 

Notes

Funding Information

Computational resources on SuperMUC in Garching, Germany, provided by the Leibniz Supercomputing Centre, under the project pr83te are gratefully acknowledged. The study was partly funded by the German Research Foundation (DFG) under the project “High-order discontinuous Galerkin for the EXA-scale” (ExaDG) within the priority program “Software for Exascale Computing” (SPPEXA), grant agreement no. KR4661/2-1.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Temmerman, L., Leschziner, M.A., Mellen, C.P., Fröhlich, J.: Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions. Int. J. Heat Fluid Fl. 24(2), 157–180 (2003).  https://doi.org/10.1016/S0142-727X(02)00222-9 CrossRefGoogle Scholar
  2. 2.
    Fröhlich, J., Mellen, C.P., Rodi, W., Temmerman, L., Leschziner, M.A.: Highly resolved large-eddy simulation of separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 526, 19–66 (2005).  https://doi.org/10.1017/S0022112004002812 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Balakumar, P., Park, G., Pierce, B.: DNS, LES, and wall-modeled LES of separating flow over periodic hills. In: CTR, Proceedings of the Summer Program, pp. 407–415 (2014)Google Scholar
  4. 4.
    Bolemann, T., Beck, A., Flad, D., Frank, H., Mayer, V., Munz, C.D.: High-order discontinuous Galerkin schemes for large-eddy simulations of moderate Reynolds number flows. In: IDIHOM: Industrialization of High-Order Methods – A Top-Down Approach, pp 435–456. Springer (2015),  https://doi.org/10.1007/978-3-319-12886-3_20 Google Scholar
  5. 5.
    Diosady, L.T., Murman, S.M.: DNS of flows over periodic hills using a discontinuous Galerkin spectral-element method. AIAA paper no. 2014–2784.  https://doi.org/10.2514/6.2014-2784 (2014)
  6. 6.
    Kronbichler, M., Krank, B., Fehn, N., Legat, S., Wall, W.A.: A new high-order discontinuous Galerkin solver for DNS and LES of turbulent incompressible flow. In: New Results in Numerical and Experimental Fluid Mechanics XI, pp. 467–477. Springer (2018).  https://doi.org/10.1007/978-3-319-64519-3_42 Google Scholar
  7. 7.
    de la Llave Plata, M., Couaillier, V., le Pape, M.C.: On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence. Comput Fluids.  https://doi.org/10.1016/j.compfluid.2017.05.013 (2017)
  8. 8.
    Krank, B., Kronbichler, M., Wall, W.A.: A multiscale approach to hybrid RANS/LES wall modeling within a high-order discontinuous Galerkin scheme using function enrichment. arXiv:1705.08813 (2017)
  9. 9.
    Krank, B., Kronbichler, M., Wall, W.A.: Wall modeling via function enrichment: extension to detached-eddy simulation. arXiv:1712.08469 (2017)
  10. 10.
    Krank, B., Kronbichler, M., Wall, W.A.: Wall modeling via function enrichment within a high-order DG method for RANS simulations of incompressible flow. Int. J. Numer. Meth. Fluids 86, 107–129 (2018).  https://doi.org/10.1002/fld.4409 MathSciNetCrossRefGoogle Scholar
  11. 11.
    Krank, B., Wall, W.A.: A new approach to wall modeling in LES of incompressible flow via function enrichment. J. Comput. Phys. 316, 94–116 (2016).  https://doi.org/10.1016/j.jcp.2016.04.001 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rapp, C., Breuer, M., Manhart, M., Peller, N.: 2D Periodic Hill Flow. http://qnet-ercoftac.cfms.org.uk/. Last accessed 3 Oct 2017 (2013)
  13. 13.
    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills – numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38(2), 433–457 (2009).  https://doi.org/10.1016/j.compfluid.2008.05.002 CrossRefzbMATHGoogle Scholar
  14. 14.
    Rapp, C., Manhart, M.: Flow over periodic hills: an experimental study. Exp. Fluids 51(1), 247–269 (2011).  https://doi.org/10.1007/s00348-011-1045-y CrossRefGoogle Scholar
  15. 15.
    Kähler, C. J., Scharnowski, S., Cierpka, C.: Highly resolved experimental results of the separated flow in a channel with streamwise periodic constrictions. J. Fluid Mech. 796, 257–284 (2016).  https://doi.org/10.1017/jfm.2016.250 CrossRefGoogle Scholar
  16. 16.
    Krank, B., Fehn, N., Wall, W.A., Kronbichler, M.: A high-order semi-explicit discontinuous Galerkin solver for 3D incompressible flow with application to DNS and LES of turbulent channel flow. J. Comput. Phys. 348, 634–659 (2017).  https://doi.org/10.1016/j.jcp.2017.07.039 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Karniadakis, G.E., Israeli, M., Orszag, S.A.: High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414–443 (1991).  https://doi.org/10.1016/0021-9991(91)90007-8 MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19(4), 742–760 (1982).  https://doi.org/10.1137/0719052 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Fehn, N., Wall, W.A., Kronbichler, M.: On the stability of projection methods for the incompressible Navier–Stokes equations based on high-order discontinuous Galerkin discretizations. J. Comput. Phys. 351, 392–421 (2017).  https://doi.org/10.1016/j.jcp.2017.09.031 MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Fehn, N., Wall, W.A., Kronbichler, M.: Robust and efficient discontinuous Galerkin methods for under-resolved turbulent incompressible flows. arXiv:1801.08103 (2018)
  21. 21.
    Gassner, G.J., Beck, A.D.: On the accuracy of high-order discretizations for underresolved turbulence simulations. Theor. Comput. Fluid. Dyn. 27 (3), 221–237 (2013).  https://doi.org/10.1007/s00162-011-0253-7 CrossRefGoogle Scholar
  22. 22.
    Kirby, R.M., Karniadakis, G.E.: De-aliasing on non-uniform grids: algorithms and applications. J. Comput. Phys. 191(1), 249–264 (2003).  https://doi.org/10.1016/S0021-9991(03)00314-0 CrossRefzbMATHGoogle Scholar
  23. 23.
    Kronbichler, M., Kormann, K.: Fast matrix-free evaluation of discontinuous Galerkin finite element operators. arXiv:1711.03590 (2017)
  24. 24.
    Kronbichler, M., Wall, W.A.: A performance comparison of continuous and discontinuous Galerkin methods with fast multigrid solvers. arXiv:1611.03029 (2016)
  25. 25.
    Kronbichler, M., Kormann, K.: A generic interface for parallel cell-based finite element operator application. Comput. Fluids 63, 135–147 (2012).  https://doi.org/10.1016/j.compfluid.2012.04.012 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Arndt, D., Bangerth, W., Davydov, D., Heister, T., Heltai, L., Kronbichler, M., Maier, M., Pelteret, J.P., Turcksin, B., Wells, D.: The deal.II library, version 8.5. J. Numer. Math. 25(3), 137–145 (2017).  https://doi.org/10.1515/jnma-2017-0058 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Gassner, G., Kopriva, D.A.: A comparison of the dispersion and dissipation errors of Gauss and Gauss–Lobatto discontinuous Galerkin spectral element methods. SIAM J. Sci. Comput. 33(5), 2560–2579 (2011).  https://doi.org/10.1137/100807211 MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Moura, R., Mengaldo, G., Peiró, J., Sherwin, S.: On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017).  https://doi.org/10.1016/j.jcp.2016.10.056 MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Moura, R., Sherwin, S., Peiró, J.: Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015).  https://doi.org/10.1016/j.jcp.2015.06.020 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Altmann, C., Beck, A., Birkefeld, A., Hindenlang, F., Staudenmaier, M., Gassner, G., Munz, C.D.: Discontinuous Galerkin for high performance computational fluid dynamics (HPCDG). In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds.) High Performance Computing in Science and Engineering ’11, pp 277–288. Springer (2012).  https://doi.org/10.1007/978-3-642-23869-7_21 Google Scholar
  31. 31.
    Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit high-order discontinuous Galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech. - B/Fluids 55 Part 2, 367–379 (2016).  https://doi.org/10.1016/j.euromechflu.2015.08.010 MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Hindenlang, F., Gassner, G., Altmann, C., Beck, A., Staudenmaier, M., Munz, C.D.: Explicit discontinuous Galerkin methods for unsteady problems. Comput. Fluids 61, 86–93 (2012).  https://doi.org/10.1016/j.compfluid.2012.03.006 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Carton de Wiart, C., Hillewaert, K., Duponcheel, M., Winckelmans, G.: Assessment of a discontinuous Galerkin method for the simulation of vortical flows at high Reynolds number. Int. J. Numer. Meth. Fluids 74(7), 469–493 (2014).  https://doi.org/10.1002/fld.3859 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Fehn, N., Wall, W.A., Kronbichler, M.: Efficiency of high-performance discontinuous Galerkin spectral element methods for under-resolved turbulent incompressible flows. Int. J. Numer. Meth. Fluids (2018).  https://doi.org/10.1002/fld.4511 CrossRefGoogle Scholar
  35. 35.
    Benocci, C., Pinelli, A.: The role of the forcing term in the large eddy simulation of equilibrium channel flow. Eng. Turb. Model. Exper. 1, 287–296 (1990)Google Scholar
  36. 36.
    Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)Google Scholar
  37. 37.
    Moin, P., Mahesh, K.: Direct numerical simulation: A tool in turbulence research. Annu. Rev. Fluid Mech. 30(1), 539–578 (1998).  https://doi.org/10.1146/annurev.fluid.30.1.539 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Krank, B., Kronbichler, M., Wall, W.A.: DNS reference data of flow over periodic hills at Re= 5600 and 10595.  https://doi.org/10.14459/2018mp1415670. MediaTUM public repository (2018)
  39. 39.
    Kreiss, G., Krank, B., Efraimsson, G.: Analysis of stretched grids as buffer zones in simulations of wave propagation. Appl. Numer. Math. 107, 1–17 (2016).  https://doi.org/10.1016/j.apnum.2016.04.008 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Rapp, C.: Experimentelle Studie der turbulenten Strömung über periodische Hügel. Ph.D. thesis, Technische Universität München (2009)Google Scholar
  41. 41.
    Flad, D., Beck, A., Munz, C.D.: Simulation of underresolved turbulent flows by adaptive filtering using the high order discontinuous Galerkin spectral element method. J. Comput. Phys. 313, 1–12 (2016).  https://doi.org/10.1016/j.jcp.2015.11.064 MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Flad, D., Gassner, G.: On the use of kinetic energy preserving DG-schemes for large eddy simulation. J. Comput. Phys. 350, 782–795 (2017).  https://doi.org/10.1016/j.jcp.2017.09.004 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Chapelier, J.B., de la Llave Plata, M., Lamballais, E.: Development of a multiscale LES model in the context of a modal discontinuous Galerkin method. Comput. Methods Appl. Mech. Eng. 307, 275–299 (2016).  https://doi.org/10.1016/j.cma.2016.04.031 MathSciNetCrossRefGoogle Scholar
  44. 44.
    Frère, A., Carton de Wiart, C., Hillewaert, K., Chatelain, P., Winckelmans, G.: Application of wall-models to discontinuous Galerkin LES. Phys. Fluids 29(085), 111 (2017).  https://doi.org/10.1063/1.4998977 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute for Computational MechanicsTechnical University of MunichGarchingGermany

Personalised recommendations