Advertisement

Flow, Turbulence and Combustion

, Volume 101, Issue 2, pp 343–364 | Cite as

Effects of Discrete Energy and Helicity Conservation in Numerical Simulations of Helical Turbulence

  • Francesco CapuanoEmail author
  • Donato Vallefuoco
Article
  • 85 Downloads

Abstract

Helicity is the scalar product between velocity and vorticity and, just like energy, its integral is an inviscid invariant of the three-dimensional incompressible Navier-Stokes equations. However, space- and time-discretization methods typically corrupt this property, leading to violation of the inviscid conservation principles. This work investigates the discrete helicity conservation properties of spectral and finite-differencing methods, in relation to the form employed for the convective term. Effects due to Runge-Kutta time-advancement schemes are also taken into consideration in the analysis. The theoretical results are proved against inviscid numerical simulations, while a scale-dependent analysis of energy, helicity and their non-linear transfers is performed to further characterize the discretization errors of the different forms in forced helical turbulence simulations.

Keywords

Helicity Discrete conservation properties Turbulence 

Notes

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Olver, P.J.: A nonlinear Hamiltonian structure for the Euler equations. J. Math. Anal. Appl. 89(1), 233–250 (1982)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arnold, V.I.: Hamiltonian nature of the euler equations in the dynamics of a rigid body and of an ideal fluid. In: Vladimir, I (ed.) Arnold-Collected Works, pp. 175–178. Springer (1969)Google Scholar
  3. 3.
    Olver, P.J.: On the Hamiltonian structure of evolution equations. In: Mathematical Proceedings of the Cambridge Philosophical Society, vol. 88, pp. 71–88. Cambridge University Press (1980)Google Scholar
  4. 4.
    Holm, D.D.: Geometric Mechanics: Part I: Dynamics and Symmetry. World Scientific Publishing Company, Singapore (2011)CrossRefGoogle Scholar
  5. 5.
    Moreau, J.J.: Constantes dun ilot tourbillonnaire en fluide parfait barotrope. C. R. Acad. Sci. 252(19), 2810 (1961)zbMATHGoogle Scholar
  6. 6.
    Moffatt, H., Tsinober, A.: Helicity in laminar and turbulent flow. Annu. Rev. Fluid Mech. 24(1), 281–312 (1992)MathSciNetCrossRefGoogle Scholar
  7. 7.
    André, J., Lesieur, M.: Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J. Fluid Mech. 81(1), 187–207 (1977)CrossRefGoogle Scholar
  8. 8.
    Kraichnan, R.H., Panda, R.: Depression of nonlinearity in decaying isotropic turbulence. Phys. Fluids 31(9), 2395–2397 (1988)CrossRefGoogle Scholar
  9. 9.
    Teitelbaum, T., Mininni, P.D.: Effect of helicity and rotation on the free decay of turbulent flows. Phys. Rev. Lett. 103(1), 014,501 (2009)CrossRefGoogle Scholar
  10. 10.
    Biferale, L., Musacchio, S., Toschi, F.: Split energy–helicity cascades in three-dimensional homogeneous and isotropic turbulence. J. Fluid Mech. 730, 309–327 (2013)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Chen, Q., Chen, S., Eyink, G.L.: The joint cascade of energy and helicity in three-dimensional turbulence. Phys. Fluids 15(2), 361–374 (2003)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kessar, M., Plunian, F., Stepanov, R., Balarac, G.: Non-Kolmogorov cascade of helicity-driven turbulence. Phys. Rev. E 92(3), 031,004 (2015)CrossRefGoogle Scholar
  13. 13.
    Lautenschlager, M., Eppel, D., Thacker, W.: Subgrid parametrization in helical flows. Beitr. Phys. Atmos 61, 87–97 (1988)zbMATHGoogle Scholar
  14. 14.
    Morbiducci, U., Ponzini, R., Grigioni, M., Redaelli, A.: Helical flow as fluid dynamic signature for atherogenesis risk in aortocoronary bypass. A numeric study. J. Biomech. 40(3), 519–534 (2007)CrossRefGoogle Scholar
  15. 15.
    Capuano, F., Coppola, G., Balarac, G., de Luca, L.: Energy preserving turbulent simulations at a reduced computational cost. J. Comput. Phys. 298, 480–494 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Morinishi, Y., Lund, T.S., Vasilyev, O.V., Moin, P.: Fully conservative higher order finite difference schemes for incompressible flows. J. Comput. Phys. 143, 90–124 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Verstappen, R.W.C.P., Veldman, A.E.P.: Symmetry–preserving discretization of turbulent flow. J. Comput. Phys. 187, 343–368 (2003)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Bernsen, E., Bokhove, O., van der Vegt, J.J.: A (dis)continuous finite element model for generalized 2d vorticity dynamics. J. Comput. Phys. 211(2), 719–747 (2006)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lee, D., Palha, A., Gerritsma, M.: Discrete conservation properties for shallow water flows using mixed mimetic spectral elements. J. Comput. Phys. 357, 282–304 (2017)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Liu, J.G., Shu, C.W.: A high-order discontinuous Galerkin method for 2d incompressible flows. J. Comput. Phys. 160(2), 577–596 (2000)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Palha, A., Gerritsma, M.: A mass, energy, enstrophy and vorticity conserving (MEEVC) mimetic spectral element discretization for the 2d incompressible Navier–Stokes equations. J. Comput. Phys. 328, 200–220 (2017)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Liu, J.G., Wang, W.C.: Energy and helicity preserving schemes for hydro- and magnetohydro-dynamics flows with symmetry. J. Comput. Phys. 200(1), 8–33 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Olshanskii, M., Rebholz, L.G.: Note on helicity balance of the Galerkin method for the 3d Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 199(17-20), 1032–1035 (2010)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Olshanskii, M.A., Rebholz, L.G.: Velocity–vorticity–helicity formulation and a solver for the Navier–Stokes equations. J. Comput. Phys. 229(11), 4291–4303 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Rebholz, L.G.: An energy- and helicity-conserving finite element scheme for the Navier-Stokes equations. SIAM J. Numer. Anal. 45(4), 1622–1638 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Capuano, F., Coppola, G., de Luca, L.: An efficient time advancing strategy for energy-preserving simulations. J. Comput. Phys. 295, 209–229 (2015)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Trefethen, L.N.: Spectral Methods in MATLAB, vol. 10 SIAM (2000)Google Scholar
  28. 28.
    Kravhcenko, A.G., Moin, P.: On the effect of numerical errors in large eddy simulations of turbulent flows. J. Comput. Phys. 131, 310–322 (1997)CrossRefGoogle Scholar
  29. 29.
    Zang, T.A.: On the rotation and skew-symmetric forms for incompressible flow simulations. Appl. Numer. Math. 7, 27–40 (1991)CrossRefGoogle Scholar
  30. 30.
    Blaisdell, G.A., Spyropoulos, E.T., Qin, J.H.: The effect of the formulation of nonlinear terms on aliasing errors in spectral methods. Appl. Numer. Math. 21(3), 207–219 (1996)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Horiuti, K.: Comparison of conservative and rotational forms in large eddy simulation of turbulent channel flow. J. Comput. Phys 71, 343–370 (1987)CrossRefGoogle Scholar
  32. 32.
    Robidoux, N., Steinberg, S.: A discrete vector calculus in tensor grids. Comput. Methods Appl. Math. 11(1), 23–66 (2011)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Patankar, S.: Numerical Heat Transfer and Fluid Flow. CRC Press, Boca Raton (1980)CrossRefGoogle Scholar
  34. 34.
    Rhie, C., Chow, W.L.: Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J. 21(11), 1525–1532 (1983)CrossRefGoogle Scholar
  35. 35.
    Shashank, L.J., Iaccarino, G.: A co-located incompressible Navier–Stokes solver with exact mass, momentum and kinetic energy conservation in the inviscid limit. J. Comput. Phys. 229(12), 4425–4430 (2010)CrossRefGoogle Scholar
  36. 36.
    Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C., Verstappen, R.: Symmetry-preserving discretization of Navier–Stokes equations on collocated unstructured grids. J. Comput. Phys. 258, 246–267 (2014)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys. Fluids 8, 2182–2189 (1965)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Coppola, G., Capuano, F., de Luca, L.: Energy-preserving discretizations of the Navier-Stokes equations. Classical and modern approaches. In: Proceedings of the XXIII Conference of the Italian Association of Theoretical and Applied Mechanics, vol. 5, pp. 2257–2269 (2017)Google Scholar
  39. 39.
    Ham, F., Lien, F., Strong, A.: A fully conservative second-order finite difference scheme for incompressible flow on nonuniform grids. J. Comput. Phys. 177(1), 117–133 (2002)CrossRefGoogle Scholar
  40. 40.
    Sanderse, B., Koren, B.: Accuracy analysis of explicit Runge-Kutta methods applied to the incompressible Navier-Stokes equations. J. Comput. Phys. 231, 3041–3063 (2012)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Hoboken (2004)zbMATHGoogle Scholar
  42. 42.
    Capuano, F., Coppola, G., Chiatto, M., de Luca, L.: Approximate projection method for the incompressible Navier–Stokes equations. AIAA J. 54(7), 2179–2182 (2016)CrossRefGoogle Scholar
  43. 43.
    Hairer, E., Lubich, C., Wanner, G.: Geometric Numerical Integration. Springer, Berlin (2006)zbMATHGoogle Scholar
  44. 44.
    Sanderse, B.: Energy-conserving Runge-Kutta methods for the incompressible Navier-Stokes equations. J. Comput. Phys. 233, 100–131 (2013)MathSciNetCrossRefGoogle Scholar
  45. 45.
    Sanz-Serna, J.M.: Runge-Kutta schemes for Hamiltonian systems. BIT 28, 877–883 (1988)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Capuano, F., Coppola, G., Rández, L., de Luca, L.: Explicit Runge–Kutta schemes for incompressible flow with improved energy-conservation properties. J. Comput. Phys. 328, 86–94 (2017)MathSciNetCrossRefGoogle Scholar
  47. 47.
    Rosenbaum, J.: Conservation properties of numerical integration methods for systems of ordinary differential equations. J. Comput. Phys. 20, 259–267 (1976)MathSciNetCrossRefGoogle Scholar
  48. 48.
    Canuto, C., Hussaini, M., Quarteroni, A., Zang, T.: Spectral methods. Evolution to complex geometries and applications to fluid dynamics. Springer, Berlin (2007)zbMATHGoogle Scholar
  49. 49.
    Childress, S., Gilbert, A.D.: Stretch, Twist, Fold: the Fast Dynamo, vol. 37. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  50. 50.
    Kraichnan, R.H.: Helical turbulence and absolute equilibrium. J. Fluid Mech. 59(4), 745–752 (1973)CrossRefGoogle Scholar
  51. 51.
    Krstulovic, G., Mininni, P., Brachet, M., Pouquet, A.: Cascades, thermalization, and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79(5), 056,304 (2009)CrossRefGoogle Scholar
  52. 52.
    Kerr, R.M.: Higher-order derivative correlations and the alignment of small-scale structures in isotropic numerical turbulence. J. Fluid Mech. 153, 31–58 (1985)CrossRefGoogle Scholar
  53. 53.
    Vallefuoco, D., Naso, A., Godeferd, F.: Small-scale anisotropy induced by spectral forcing and by rotation in non-helical and helical turbulence. J. Turbul (2017)Google Scholar
  54. 54.
    Svärd, M., Nordström, J.: Review of summation-by-parts schemes for initial–boundary-value problems. J. Comput. Phys. 268, 17–38 (2014)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Sanderse, B., Verstappen, R., Koren, B.: Boundary treatment for fourth-order staggered mesh discretizations of the incompressible Navier–Stokes equations. J. Comput. Phys. 257, 1472–1505 (2014)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Sahoo, G., De Pietro, M., Biferale, L.: Helicity statistics in homogeneous and isotropic turbulence and turbulence models. Phys. Rev. Fluids 2(2), 024,601 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Industriale (DII)Università di Napoli “Federico II”NapoliItaly
  2. 2.Fluid Mechanics and Acoustics LaboratoryÉcole Centrale de Lyon, UMR 5509 CNRSLyonFrance

Personalised recommendations