Flow, Turbulence and Combustion

, Volume 101, Issue 3, pp 775–794 | Cite as

Numerical Investigation of Turbulent Kinetic Energy Dynamics in Chemically-Reacting Homogeneous Turbulence

  • Paulo L. K. PaesEmail author
  • Yuan Xuan


In this work, we investigate numerically the temporal evolution of Turbulent Kinetic Energy (TKE) of a chemically-reacting n-heptane and air mixture in statistically Homogeneous Isotropic Turbulence (HIT). Our specific focus is on the concurrent view of TKE evolution in both physical and scale (Fourier) spaces to identify the impact of reaction-induced heat release on turbulence. The simulation parameters are selected to represent the combustion characteristics of heavy hydrocarbon fuels under engine conditions. Results indicate that pressure dilatation work dominates the TKE evolution during the period of strong heat release and its dominance is attributed to the strong volumetric dilatation associated with the presence of reaction fronts in physical space. Viscous dissipation and viscous dilatation terms become much stronger with increasing heat release, primarily due to the increase in strain-rate and dilatation at the vicinity of the reaction fronts, but their magnitudes are still small compared to that of pressure dilatation work. In addition, the analysis in Fourier space shows that pressure dilatation work dominates the evolution of TKE not only in the mean, but also over a wide range of scales. The spectrum of pressure dilatation shows a power-law behavior, which is a direct consequence of the localized sheet-like reaction fronts in physical space. It is also shown that viscous dissipation spectrum initially removes kinetic energy at small scales when heat release is weak, but starts to remove kinetic energy at intermediate and later at large scales due to the presence of localized reaction fronts during the strong heat release period. More interestingly, it is observed that the inter-scale kinetic energy transfer spectrum moves energy from less dissipative scales (small scales) to scales where kinetic energy is more effectively removed by viscous dissipation work (large scales) during the period of strong heat release, which indicates possible up-scale kinetic energy transfer in Fourier space.


Turbulent kinetic energy Reacting flow Homogeneous isotropic turbulence Direct numerical simulation 



The authors gratefully acknowledge funding from The Pennsylvania State University. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), supported by National Science Foundation grant number TG-CTS150017. This research was conducted with Advanced Cyber Infrastructure computational resources provided by The Institute for CyberScience at The Pennsylvania State University.

Compliance with Ethical Standards

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Peters, N.: Turbulent combustion. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  2. 2.
    Haworth, D.C., Poinsot, T.J.: Numerical simulations of lewis number effects in turbulent premixed flames. J. Fluid Mech. 244, 405–436 (1992)CrossRefGoogle Scholar
  3. 3.
    Trouvé, A., Poinsot, T.: The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 1–31 (1994)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Driscoll, J.F.: Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities. Progress Energy Combust. Sci. 34(1), 91–134 (2008)CrossRefGoogle Scholar
  5. 5.
    Tahry, S.H.E., Rutland, C., Ferziger, J.: Structure and propagation speeds of turbulent premixed flames—a numerical study. Combust. Flame 83(1), 155–173 (1991)CrossRefGoogle Scholar
  6. 6.
    Meneveau, C., Poinsot, T.: Stretching and quenching of flamelets in premixed turbulent combustion. Combust. Flame 86(4), 311–332 (1991)CrossRefGoogle Scholar
  7. 7.
    Bilger, R., Pope, S., Bray, K., Driscoll, J.: Paradigms in turbulent combustion research. Proc. Combust. Inst. 30(1), 21–42 (2005)CrossRefGoogle Scholar
  8. 8.
    Jaberi, F.A., Livescu, D., Madnia, C.K.: Characteristics of chemically reacting compressible homogeneous turbulence. Phys. Fluids 12(5), 1189–1209 (2000)CrossRefGoogle Scholar
  9. 9.
    Martin, M.P., Candler, G.V.: Effect of chemical reactions on decaying isotropic turbulence. Phys. Fluids 10(7), 1715–1724 (1998)CrossRefGoogle Scholar
  10. 10.
    Lee, K., Girimaji, S.S.: Flow-thermodynamics interactions in decaying anisotropic compressible turbulence with imposed temperature fluctuations. Theor. Comput. Fluid Dyn. 27(1), 115–131 (2013)CrossRefGoogle Scholar
  11. 11.
    Lee, K., Yu, D., Girimaji, S.S.: Lattice boltzmann dns of decaying compressible isotropic turbulence with temperature fluctuations. Int. J. Comput. Fluid Dyn. 20(6), 401–413 (2006)CrossRefGoogle Scholar
  12. 12.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Progress Energy Combust. Sci. 28(3), 193–266 (2002)CrossRefGoogle Scholar
  13. 13.
    Knaus, R., Pantano, C.: On the effect of heat release in turbulence spectra of non-premixed reacting shear layers. J. Fluid Mech. 626, 67–109 (2009)CrossRefGoogle Scholar
  14. 14.
    Kolla, H., Hawkes, E.R., Kerstein, A.R., Swaminathan, N., Chen, J.H.: On velocity and reactive scalar spectra in turbulent premixed flames. J. Fluid Mech. 754, 456–487 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., Ihme, M., Hamlington, P.E.: Spectral energy dynamics in premixed flames. Center for Turbulence Research Proceedings of the Summer Program, pp. 159–168 (2014)Google Scholar
  16. 16.
    Towery, C.A.Z., Poludnenko, A.Y., Urzay, J., O’Brien, J., Ihme, M., Hamlington, P.E.: Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93(053), 115 (2016)Google Scholar
  17. 17.
    Menon, S.K., Boettcher, P.A., Ventura, B., Blanquart, G.: Hot surface ignition of n-hexane in air. Combust. Flame 163, 42–53 (2016)CrossRefGoogle Scholar
  18. 18.
    Blanquart, G., Pepiot-Desjardins, P., Pitsch, H.: Chemical mechanism for high temperature combustion of engine relevant fuels with emphasis on soot precursors. Combust. Flame 156(3), 588–607 (2009)CrossRefGoogle Scholar
  19. 19.
    Narayanaswamy, K., Blanquart, G., Pitsch, H.: A consistent chemical mechanism for oxidation of substituted aromatic species. Combust. Flame 157(10), 1879–1898 (2010)CrossRefGoogle Scholar
  20. 20.
    Pepiot-Desjardins, P., Pitsch, H.: An efficient error-propagation-based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1), 67–81 (2008)CrossRefGoogle Scholar
  21. 21.
    Desjardins, O., Blanquart, G., Balarac, G., Pitsch, H.: High order conservative finite difference scheme for variable density low Mach number turbulent flows. J. Comput. Phys. 227(15), 7125–7159 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Verma, S., Xuan, Y., Blanquart, G.: An improved bounded semi-lagrangian scheme for the turbulent transport of passive scalars. J. Comput. Phys. 272, 1–22 (2014)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Xuan, Y., Blanquart, G.: Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame. Combust. Flame 160(9), 1657–1666 (2013)CrossRefGoogle Scholar
  24. 24.
    Xuan, Y., Blanquart, G., Mueller, M.E.: Modeling curvature effects in diffusion flames using a laminar flamelet model. Combust. Flame 161(5), 1294–1309 (2014)CrossRefGoogle Scholar
  25. 25.
    Carroll, P.L., Blanquart, G.: A proposed modification to lundgren’s physical space velocity forcing method for isotropic turbulence. Phys. Fluids 25(105), 114 (2013)Google Scholar
  26. 26.
    Carroll, P.L., Verma, S., Blanquart, G.: A novel forcing technique to simulate turbulent mixing in a decaying scalar field. Phys. Fluids 25(095), 102 (2013)Google Scholar
  27. 27.
    Mueller, M.E., Pitsch, H.: Les model for sooting turbulent nonpremixed flames. Combust. Flame 159(6), 2166–2180 (2012)CrossRefGoogle Scholar
  28. 28.
    Savard, B., Xuan, Y., Bobbitt, B., Blanquart, G.: A computationally-efficient, semi-implicit, iterative method for the time-integration of reacting flows with stiff chemistry. Journal of Computational Physics p. in press (2015)Google Scholar
  29. 29.
    Xuan, Y., Blanquart, G.: Effects of aromatic chemistry-turbulence interactions on soot formation in a turbulent non-premixed flame. Proc. Combust. Inst. 35(2), 1911–1919 (2015)CrossRefGoogle Scholar
  30. 30.
    Lapointe, S.: Simulation of premixed hydrocarbon flames at high turbulence intensities. Ph.D. Thesis California Institute of Technology (2016)Google Scholar
  31. 31.
    Regele, J., Rabinovitch, J., Colonius, T., Blanquart, G.: Unsteady effects in dense, high speed, particle laden flows. Int. J. Multiphase Flow 61, 1–13 (2014)CrossRefGoogle Scholar
  32. 32.
    Herrmann, M., Blanquart, G., Raman, V.: Flux Corrected Finite Volume Scheme for Preserving Scalar Boundedness in Reacting Large-Eddy Simulations. AIAA J. 44(12), 2879–2886 (2006)CrossRefGoogle Scholar
  33. 33.
    Batchelor, G.K.: The theory of homogeneous turbulence. Cambridge University Press, Cambridge (1953)zbMATHGoogle Scholar
  34. 34.
    Davidson, P.: Turbulence: an introduction for scientists and engineers. Oxford University Press, Oxford (2004)zbMATHGoogle Scholar
  35. 35.
    Dec, J., Sjöberg, M.: Isolating the effects of fuel chemistry on combustion phasing in an hcci engine and the potential of fuel stratification for ignition control. SAE Technical Paper, pp. 01–0557 (2004)Google Scholar
  36. 36.
    Rosales, C., Meneveau, C.: Linear forcing in numerical simulations of isotropic turbulence: Physical space implementations and convergence properties. Phys. Fluids 17(9), 095,106 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefGoogle Scholar
  38. 38.
    Yu, R., Yu, J., Bai, X.S.: An improved high-order scheme for dns of low mach number turbulent reacting flows based on stiff chemistry solver. J. Comput. Phys. 231 (16), 5504–5521 (2012)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Jones, W.P.: Turbulence modeling and numerical solution methods for variable density and combusting flows. In: Libby, P.A., Williams, F.A. (eds.) Turbulent Reacting Flows, pp 309–374. Academic Press, London (1994)Google Scholar
  40. 40.
    Sankaran, E.R., Hawkes Ramanan P.P.P.J.H.C.: Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities: Ii. parametric study. Combust. Flame 145, 145–159 (2006)CrossRefGoogle Scholar
  41. 41.
    Yoo, C.S., Lu, T., Chen, J.H., Law, C.K.: Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature inhomogeneities at constant volume: Parametric study. Combust. Flame 158(9), 1727–1741 (2011)CrossRefGoogle Scholar
  42. 42.
    Yoo, C.S., Luo, Z., Lu, T., Kim, H., Chen, J.H.: A dns study of ignition characteristics of a lean iso-octane/air mixture under hcci and saci conditions. Proc. Combust. Inst. 34(2), 2985–2993 (2013)CrossRefGoogle Scholar
  43. 43.
    Temme, J., Wabel, T.M., Skiba, A.W., Driscoll, J.F.: Measurements of Premixed Turbulent Combustion Regimes of High Reynolds Number Flames. 53Rd AIAA Aerospace Sciences Meeting, Kissimmee, Florida (2015)Google Scholar
  44. 44.
    Li, Z., Li, B., Sun, Z., Bai, X., Aldén, M.: Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot plif imaging of ch, oh, and ch2o in a piloted premixed jet flame. Combust. Flame 157(6), 1087–1096 (2010)CrossRefGoogle Scholar
  45. 45.
    Domaradzki, J.A., Rogallo, R.S.: Local energy transfer and nonlocal interactions in homogeneous, isotropic turbulence. Phys. Fluids A: Fluid Dyn. 2(3), 413–426 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Nuclear EngineeringThe Pennsylvania State UniversityUniversity ParkUSA

Personalised recommendations