Advertisement

Flow, Turbulence and Combustion

, Volume 101, Issue 3, pp 681–703 | Cite as

Assessment of a Two-Way Coupling Methodology Between a Flow and a High-Order Nonlinear Acoustic Unstructured Solvers

  • Adrien Langenais
  • François Vuillot
  • Christophe Peyret
  • Gilles Chaineray
  • Christophe Bailly
Article
  • 159 Downloads

Abstract

A two-way coupling on unstructured meshes between a flow and a high-order acoustic solvers for jet noise prediction is considered. The flow simulation aims at generating acoustic sources in the near field while the acoustic simulation solves the full Euler equations, thanks to a discontinuous Galerkin method, in order to take into account nonlinear acoustic propagation effects. This methodology is firstly validated on academic cases involving nonlinear sound propagation, shock waves and convection of aerodynamic perturbations. The results are compared to analytical solutions and direct computations. A good behaviour of the coupling is found regarding the targeted space applications. An application on a launch pad model is then simulated to demonstrate the robustness and reliability of the present approach.

Keywords

Two-way Navier-Stokes−Euler coupling Nonlinear acoustics High-order solver Unstructured grids 

Notes

Acknowledgements

This study is supported by the french national space agency CNES and the ONERA’s scientific direction. The authors are grateful to H. Lambaré, technical referee at CNES for launchers acoustic environment. Special thanks go to J. Troyes from ONERA for his technical support during all this work.

Funding

Financial support for the first author was provided by ONERA and CNES under convention No. 5100015478.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Seiner, J.M.: Advances in high speed jet aeroacoustics. In: 9th AIAA/NASA Aeroacoustics Conference, no. 84–2275. Williamsburg, USA (1984).  https://doi.org/10.2514/6.1984-2275
  2. 2.
    Tam, C.K.W.: Supersonic jet noise. Annu. Rev. Fluid Mech. 27, 17–43 (1995).  https://doi.org/10.1146/annurev.fl.27.010195.000313 CrossRefGoogle Scholar
  3. 3.
    Bailly, C., Fujii, K.: High-speed jet noise. Bull. JSME 3(1, 15-00496), 1–13 (2016).  https://doi.org/10.1299/mer.15-00496 Google Scholar
  4. 4.
    Chemoul, B., Louaas, E., Roux, P., Schmitt, D., Pourcher, M.: Ariane 5 Flight Environments. Acta Astronaut. 48(5–12), 275–285 (2001).  https://doi.org/10.1016/S0094-5765(01)00026-1 CrossRefGoogle Scholar
  5. 5.
    Tam, C.K.W., Viswanathan, K., Ahuja, K.K., Panda, J.: The source of jet noise: experimental evidence. J. Fluid Mech. 615, 253–292 (2008).  https://doi.org/10.1017/S0022112008003704 CrossRefzbMATHGoogle Scholar
  6. 6.
    Gély, D., Elias, G., Bresson, C., Foulon, H., Radulovic, S.: Reduction of supersonic jet noise - application to the Ariane 5 launch vehicle. In: 6th AIAA/CEAS Aeroacoustics Conference, pp. 2000–2026. Lahaina (2000).  https://doi.org/10.2514/6.2000-2026
  7. 7.
    Eldred, K.M.: Acoustic loads generated by the propulsion system. Special Publication 8072, NASA (1971)Google Scholar
  8. 8.
    Varnier, J., Koudriavstsev, V., Safronov, A.: Simplified approach of jet aerodynamics with a view to acoustics. AIAA J. 44(7), 1690–1693 (2006).  https://doi.org/10.2514/1.5087 CrossRefGoogle Scholar
  9. 9.
    Kandula, M.: Near-field acoustics of clustered rocket engines. J. Sound Vib. 309 (3–5), 852–857 (2007).  https://doi.org/10.1016/j.jsv.2007.06.078 CrossRefGoogle Scholar
  10. 10.
    Haynes, J., Kenny, J.: Modifications to the NASA SP-8072 distributed source Method II for Ares I Lift-off Environment Predictions. In: 15th AIAA/CEAS Aeroacoustics Conference, no. 2009–3160. Miami (2009).  https://doi.org/10.2514/6.2009-3160
  11. 11.
    de Cacqueray, N., Bogey, C., Bailly, C.: Investigation of a High-Mach-Number Overexpanded Jet using Large-eddy Simulation. AIAA J. 49(10), 2171–2182 (2011).  https://doi.org/10.2514/1.J050952 CrossRefGoogle Scholar
  12. 12.
    Dargaud, J.-B., Troyes, J., Lamet, J.-M., Tessé, L., Vuillot, F., Bailly, C.: Numerical study of solid-rocket motor ignition overpressure wave including infrared radiation. J. Propuls. Power 30(1), 164–174 (2014).  https://doi.org/10.2514/1.B34824 CrossRefGoogle Scholar
  13. 13.
    Troyes, J., Vuillot, F., Lambaré, H., Espinosa Ramos, A.: Numerical Study of Free Supersonic Hot Jet on Unstructured Grids with Emphasis on Aerodynamics and Resulting Radiated Noise. In: 22nd AIAA/CEAS Aeroacoustics Conference, no. 2016–2734. Lyon.  https://doi.org/10.2514/6.2016-2734 (2016)
  14. 14.
    Brès, G., Ham, F., Nichols, J., Lele, S.: Unstructured large-eddy simulations of supersonic jets. AIAA J. 55, 1164–1184 (2017).  https://doi.org/10.2514/1.J055084 CrossRefGoogle Scholar
  15. 15.
    Langenais, A., Vuillot, F., Troyes, J., Bailly, C.: Numerical Investigation of the Noise Generated by a Rocket Engine at Lift-off Conditions using a Two-way Coupled CFD-CAA Method. In: 23rd AIAA/CEAS Aeroacoustics Conference, no. 2017–3212. Denver.  https://doi.org/10.2514/6.2017-3212 (2017)
  16. 16.
    Fujii, K., Nonomura, T., Tsutsumi, S.: Toward accurate simulation and analysis of strong acoustic wave phenomena - a review from the experience of our study on rocket problems. Int. J. Numer. Methods Fluids 64, 1412–1432 (2010).  https://doi.org/10.1002/fld.2446 CrossRefzbMATHGoogle Scholar
  17. 17.
    Tsutsumi, S., Ishii, S., Ui, K., Tokudome, S., Wada, K.: Assessing Prediction and Reduction Technique of Lift-off Acoustics Using Epsilon Flight Data. In: 53rd AIAA Aerospace Sciences Meeting, no. 2015–1007. Kissimmee (2015).  https://doi.org/10.2514/6.2015-1007
  18. 18.
    Lyrintzis, A.S.: Surface integral methods in computational aeroacoustics - from the (CFD) near-field to the (Acoustic) far-field. Int. J. Aeroacous. 2(2), 95–128 (2003).  https://doi.org/10.1260/147547203322775498 CrossRefGoogle Scholar
  19. 19.
    Uzun, A., Lyrintzis, A.S., Blaisdell, G.A.: Coupling of integral acoustics methods with LES for jet noise prediction. Int. J. Aeroacous. 3(4), 297–346 (2005).  https://doi.org/10.1260/1475472043499290 CrossRefGoogle Scholar
  20. 20.
    Rahier, G., Prieur, J., Vuillot, F., Lupoglazoff, N., Biancherin, A.: Investigation of integral surface formulations for acoustic post-processing of unsteady aerodynamic jet simulations. Aerosp. Sci. Technol. 8, 453–467 (2004).  https://doi.org/10.1016/j.ast.2004.04.005 CrossRefzbMATHGoogle Scholar
  21. 21.
    Troyes, J., Vuillot, F., Lambaré, H., Espinosa Ramos, A.: Study of Impinging Supersonic Jet Noise with Aerodynamics and Acoustics Numerical Simulations. In: 30th International Symposium on Space Technology and Science, no. 2015–399. Kobe-Hyogo (2015)Google Scholar
  22. 22.
    de Cacqueray, N., Bogey, C.: Noise of an overexpanded mach 3.3 jet: non-linear propagation effects and correlations with flows. Int. J. Aeroacous. 13(7 & 8), 607–632 (2014).  https://doi.org/10.1260/1475-472X.13.7-8.607 CrossRefGoogle Scholar
  23. 23.
    Utzmann, J., Munz, C.-D., Dumbser, M., Sonnendrücker, E., Salmon, S., Jund, S., Frénod, E.: Numerical Simulation of Turbulent Flows and Noise Generation, vol. 104, chap. Fluid-Acoustic Coupling and Wave Propagation, pp. 47–74. Springer (2009).  https://doi.org/10.1007/978-3-540-89956-3_3
  24. 24.
    Guenanff, R.: Couplage instationnaire Navier-Stokes/Euler pour la génération et le rayonnement des sources de bruit aérodynamique. Ph.D. thesis, Université de Rennes I (2004)Google Scholar
  25. 25.
    Djambazov, G., Lai, C.-H., Pericleous, K.: On the coupling of Navier-Stokes and Linearied Euler equations for aeroacoustic simulation. Comput. Vis. Sci. 3, 9–12 (2000).  https://doi.org/10.1007/s007910050045 CrossRefGoogle Scholar
  26. 26.
    Bogey, C., Barré, S., Juvé, D., Bailly, C.: Simulation of a hot coaxial jet: direct noise prediction and flow-acoustics correlations. Phys. Fluids 21, 1–14 (2009).  https://doi.org/10.1063/1.3081561 CrossRefzbMATHGoogle Scholar
  27. 27.
    Sescu, A., Sassanis, V., Collins, E., Harris, R., Luke, E.: Assessing Acoustic Source Forcing Tools for Launch Vehicle Jet Noise Prediction. In: 21st AIAA/CEAS Aeroacoustics Conference, no. 2015–2381. Dallas (2015).  https://doi.org/10.2514/6.2015-2381
  28. 28.
    Harris, R., Collins, E., Luke, E., Sescu, A.: Coupled Overset Unstructured Discontinuous Galerkin Method for Launch Environment Acoustics Prediction,. In: 21st AIAA/CEAS Aeroacoustics Conference, no. 2015–2538. Dallas (2015).  https://doi.org/10.2514/6.2015-2538
  29. 29.
    Labbé, O., Peyret, C., Rahier, G., Huet, M.: A CFD/CAA coupling method applied to jet noise prediction. Comput. Fluids 86, 1–13 (2013).  https://doi.org/10.1016/j.compfluid.2013.07.013 CrossRefzbMATHGoogle Scholar
  30. 30.
    Borrel, M., Halpern, L., Ryan, J.: Euler/Navier-Stokes Coupling for Multiscale Aeroacoustic Problems. In: 20th AIAA Computational Fluid Dynamics Conference, no. 2011–3047. Honolulu (2011).  https://doi.org/10.2514/6.2011-3047
  31. 31.
    Léger, R., Peyret, C., Piperno, S.: Coupled discontinuous Galerkin / finite difference solver on hybrid meshes for computational aeroacoustics. AIAA J. 50(2), 338–349 (2012).  https://doi.org/10.2514/1.J051110 CrossRefGoogle Scholar
  32. 32.
    Labbé, O., Peyret, C.: A Hybrid LES/CAA Method Applied to a 3D Shear Flow Simulation. In: 6th International Conference on Computational Methods for Coupled Problems in Science and Engineering, pp. 501–511. Venice (2015)Google Scholar
  33. 33.
    Hardin, J., Ristorcelli, J., Tam, C.: (eds.) ICASE/LaRC Workshop on Benchmark Problems in Computational Aeroacoustics (CAA) no. 3300. Cleveland (1994)Google Scholar
  34. 34.
    Tam, C., Hardin, J. (eds.) Second Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 3352. Tallahassee (1997)Google Scholar
  35. 35.
    Hardin, J., Huff, D., Tam, C. (eds.) Third Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 2000-209790. Cleveland (2000)Google Scholar
  36. 36.
    Dahl, M., Envia, E., Huff, D., Tam, C. (eds.) Fourth Computational Aeroacoustics (CAA) Workshop on Benchmark Problems, no. 2004-212954. Brook Park (2004)Google Scholar
  37. 37.
    Yee, H., Sandham, N., Djomehri, M.: Low-dissipative high-order shock-capturing methods using characteristic-based filters. J. Comput. Phys. 150, 199–238 (1999).  https://doi.org/10.1006/jcph.1998.6177 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Refloch, A., Courbet, B., Murrone, A., Villedieu, P., Laurent, C., Gilbank, P., Troyes, J., Tessé, L., Chaineray, G., Dargaud, J.-B., Quémerais, E., Vuillot, F.: CEDRE Software. Aerosp. Lab. J. 2(11), 1–10 (2011)Google Scholar
  39. 39.
    Delorme, P., Mazet, P., Peyret, C., Ventribout, Y.: Computational aeroacoustics applications based on a discontinuous Galerkin method. Comptes Rendus Mécanique 333(9), 676–682 (2005).  https://doi.org/10.1016/j.crme.2005.07.007 CrossRefzbMATHGoogle Scholar
  40. 40.
    Langenais, A., Troyes, J., Peyret, C., Chaineray, G.: Couplage CFD-CAA et propagation non linéaire. In: 13eme Congrès Français d’Acoustique, no. 000150. Le Mans, France (2016)Google Scholar
  41. 41.
    Hirsch, C.: Numerical Computation of Internal and External Flows, Volume 2: Computational Methods for Inviscid and Viscous Flows, vol. 2 of 978-0-471-92452-4, Wiley (1990)Google Scholar
  42. 42.
    Hartmann, R., Houston, P.: Adaptative discontinuous Galerkin finite element methods for the compressible Euler equations. J. Comput. Phys. 183, 508–532 (2002).  https://doi.org/10.1006/jcph.2002.7206 MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Peyret, C., Delorme, P.: hp Discontinuous Galerkin Method for Computational Aeroacoustics. In: 13th AIAA/CEAS Aeroacoustics Conference, no. 2007–3475. Rome.  https://doi.org/10.2514/6.2007-3475 (2007)
  44. 44.
    Quémerais, E.: Coupling with interpolation parallel interface. http://sites.onera.fr/cwipi/ (2016)
  45. 45.
    Cunha, G., Redonnet, S.: On the signal degradation induced by the interpolation and the sampling rate reduction in aeroacoustics hybrid methods. Int. J. Numer. Methods Fluids 71(7), 910–929 (2012).  https://doi.org/10.1002/fld.3693 MathSciNetCrossRefGoogle Scholar
  46. 46.
    Tam, C.K.W.: Computational aeroacoustics: issues and methods. AIAA J. 33 (10), 1788–1796 (1995).  https://doi.org/10.2514/3.12728 CrossRefzbMATHGoogle Scholar
  47. 47.
    ISO 9613-1:1993 - acoustics - attenuation of sound during propagation outdoors - part 1: Air absorption (1993)Google Scholar
  48. 48.
    Blackstock, D.T.: Connection between the Fay and Fubini solutions for plane sound waves of finite amplitude. J. Acoust. Soc. Am. 39(6), 1019–1026 (1966).  https://doi.org/10.1121/1.1909986 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Gallagher, J.A., McLaughlin, D.K.: Experiments on the Non Linear Characteristics of Noise Propagation from Low and Moderate Reynolds Number Supersonic Jets. In: 7th AIAA Aeroacoustics Conference, no. 81–2041. Palo Alto (1981).  https://doi.org/10.2514/6.1981-2041
  50. 50.
    Liepmann, H., Roshko, A.: Element of Gasdynamics. Wiley, chap. One-dimensional wave motion (1959).  https://doi.org/10.1002/aic.690050234 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.ONERA, DMPEUniversity of Paris-SaclayPalaiseauFrance
  2. 2.LMFA UMR 5509, École Centrale de LyonUniversity of LyonÉcullyFrance

Personalised recommendations