Flow, Turbulence and Combustion

, Volume 102, Issue 1, pp 73–87 | Cite as

Targeted Drug Delivery to Upper Airways Using a Pulsed Aerosol Bolus and Inhaled Volume Tracking Method

  • Yan Ostrovski
  • Simon Dorfman
  • Maksim Mezhericher
  • Stavros Kassinos
  • Josué SznitmanEmail author


The pulmonary route presents an attractive delivery pathway for topical treatment of lung diseases. While significant progress has been achieved in understanding the physical underpinnings of aerosol deposition in the lungs, our ability to target or confine the deposition of inhalation aerosols to specific lung regions remains meagre. Here, we present a novel inhalation proof-of-concept in silico for regional targeting in the upper airways, quantitatively supported by computational fluid dynamics (CFD) simulations of inhaled micron-sized particles (i.e. 1-10 μm) using an intubated, anatomically-realistic, multi-generation airway tree model. Our targeting strategy relies on selecting the particle release time, whereby a short-pulsed bolus of aerosols is injected into the airways and the inhaled volume of clean air behind the bolus is tracked to reach a desired inhalation depth (i.e. airway generations). A breath hold maneuver then follows to facilitate deposition, via sedimentation, before exhalation resumes and remaining airborne particles are expelled. Our numerical findings showcase how particles in the range 5-10 μm combined with such inhalation methodology are best suited to deposit in the upper airways, with deposition fractions between 0.68 and unity. In contrast, smaller (< 2 μm) particles are less than optimal due to their slow sedimentation rates. We illustrate further how modulating the volume inhaled behind the pulsed bolus, prior to breath hold, may be leveraged to vary the targeted airway sites. We discuss the feasibility of the proposed inhalation framework and how it may help pave the way for specialized topical lung treatments.


Inhalation medicine Aerosol transport CFD Lungs 



The authors would like to thank Dr. Rami Fishler for fruitful discussions. This work was supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement No. 677772), and the Kamin Program from the Israel Innovation Authority (grant agreement No. 60509). The authors acknowledge COST Action MP1404 SimInhale ‘Simulation and pharmaceutical technologies for advanced patient-tailored inhaled medicines’, supported by the European Cooperation in Science and Technology (COST).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary material

(AVI 6.40 MB)


  1. 1.
    Velkov, T., Abdul Rahim, N., Zhou, Q.T., Chan, H.-K., Li, J.: Inhaled anti-infective chemotherapy for respiratory tract infections: successes, challenges and the road ahead. Adv. Drug Deliv. Rev. 85, 65–82 (2015)CrossRefGoogle Scholar
  2. 2.
    Burrowes, K.S., Doel, T., Brightling, C.: Computational modeling of the obstructive lung diseases asthma and COPD. J. Transl. Med. 12(2:S5), 1–8 (2014)Google Scholar
  3. 3.
    Tsuda, A., Henry, F.S., Butler, J.P.: Particle transport and deposition: Basic physics of particle kinetics. Compr. Physiol. 3, 1437–1471 (2013)CrossRefGoogle Scholar
  4. 4.
    Longest, P.W., Holbrook, L.T.: In silico models of aerosol delivery to the respiratory tract — Development and applications. Adv. Drug Deliv. Rev. 64(4), 296–311 (2012)CrossRefGoogle Scholar
  5. 5.
    Kleinstreuer, C., Zhang, Z., Donohue, J.F.: Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10, 195–220 (2008)CrossRefGoogle Scholar
  6. 6.
    Tu, J., Inthavong, K., Ahmadi, G.: Computational fluid and particle dynamics in the human respiratory system, 1st edn. Springer, Dordrecht (2013)Google Scholar
  7. 7.
    Weibel, E.R.: Morphometry of the human lung, 1st edn. Springer, Berlin (1963)Google Scholar
  8. 8.
    Wenzel, R.P., Fowler, A.A.: Acute Bronchitis. N. Engl. J. Med. 355(20), 2125–2130 (2006)CrossRefGoogle Scholar
  9. 9.
    Koch, C., Hiby, N.: Pathogenesis of cystic fibrosis. Lancet 341(8852), 1065–1069 (1993)CrossRefGoogle Scholar
  10. 10.
    Sznitman, J.: Respiratory microflows in the pulmonary acinus. J. Biomech. 46 (2), 284–298 (2013)CrossRefGoogle Scholar
  11. 11.
    De Boer, A.H., Gjaltema, D., Hagedoorn, P., Frijlink, H.W.: Can ‘extrafine’ dry powder aerosols improve lung deposition? Eur. J. Pharm. Biopharm. 96, 143–151 (2015)CrossRefGoogle Scholar
  12. 12.
    ICRP Protection International Commission on Radiological: ICRP publication 66: human respiratory tract model for radiological protection. Ann. ICRP 124(1–3), 1–482 (1994)Google Scholar
  13. 13.
    Patton, J.S., Byron, P.R.: Inhaling medicines: delivering drugs to the body through the lungs. Nat. Rev. Drug Discov. 6, 67–74 (2007)CrossRefGoogle Scholar
  14. 14.
    Finlay, W.H.: Motion of a single aerosol particle in a fluid. In: The Mechanics of Inhaled Pharmaceutical Aerosols, 1st edn. Academic Press, London (2001)Google Scholar
  15. 15.
    Koullapis, P.G., Kassinos, S.C., Bivolarova, M.P., Melikov, A.K.: Particle deposition in a realistic geometry of the human conducting airways: effects of inlet velocity profile, inhalation flowrate and electrostatic charge. J. Biomech. 49(11), 2201–2212 (2016)CrossRefGoogle Scholar
  16. 16.
    Virchow, J.C., et al.: Importance of inhaler devices in the management of airway disease. Respir. Med. 102(1), 10–19 (2008)CrossRefGoogle Scholar
  17. 17.
    Edwards, D.A.: Large Porous Particles for Pulmonary Drug Delivery, Science (80-. ). 276(5320), 1868–1872 (1997)Google Scholar
  18. 18.
    Edwards, D.A., Ben-Jebria, A., Langer, R.: Recent advances in pulmonary drug delivery using large, porous inhaled particles. J. Appl. Physiol. 85(2), 379–85 (1998)CrossRefGoogle Scholar
  19. 19.
    Zhang, Z., Kim, C.S., Kleinstreuer, C.: Water vapor transport and its effects on the deposition of hygroscopic droplets in a human upper airway model. Aerosol Sci. Technol. 40(1), 1–16 (2006)CrossRefGoogle Scholar
  20. 20.
    Broday, D.M., Georgopoulos, P.G.: Growth and deposition of hygroscopic particulate matter in the human lungs. Aerosol Sci. Technol. 34(2015), 144–159 (2001)CrossRefGoogle Scholar
  21. 21.
    Dames, P., et al.: Targeted delivery of magnetic aerosol droplets to the lung. Nat. Nanotechnol. 2(8), 495–9 (2007)CrossRefGoogle Scholar
  22. 22.
    Pourmehran, O., Rahimi-Gorji, M., Gorji-Bandpy, M., Gorji, T.B.: Simulation of magnetic drug targeting through tracheobronchial airways in the presence of an external non-uniform magnetic field using Lagrangian magnetic particle tracking. J. Magn. Magn. Mater. 393, 380–393 (2015)CrossRefGoogle Scholar
  23. 23.
    Xie, Y., Zeng, P., Siegel, R.A., Wiedmann, T.S., Hammer, B.E., Longest, P.W.: Magnetic deposition of aerosols composed of aggregated superparamagnetic nanoparticles. Pharm. Res. 27(5), 855–865 (2010)CrossRefGoogle Scholar
  24. 24.
    Brenner, B., Corbridge, T., Kazzi, A.: Intubation and mechanical ventilation of the asthmatic patient in respiratory failure. J. Emerg. Med. 37(2 Suppl), S23–34 (2009)CrossRefGoogle Scholar
  25. 25.
    Shetty, A.N., Bis, K.G., Kirsch, M., Weintraub, J., Laub, G.: Contrast-enhanced breath-hold three-dimensional magnetic resonance angiography in the evaluation of renal arteries: optimization of technique and pitfalls. J. Magn. Reson. Imaging 12(6), 912–23 (2000)CrossRefGoogle Scholar
  26. 26.
    Horsfield, K., Dart, G., Olson, D.: Models of the human bronchial tree. J. Appl. Physiol. 31(2), 207–217 (1971)CrossRefGoogle Scholar
  27. 27.
    Horsfield, K., Cumming, G.: Morphology of the bronchial tree in man. J. Appl. Physiol. 24(3), 373–383 (1968)CrossRefGoogle Scholar
  28. 28.
    Bauer, K., Chaves, H., Brücker, C.: Visualizing flow partitioning in a model of the upper human lung airways. J. Biomech. Eng. 132(3), 31005 (2010)CrossRefGoogle Scholar
  29. 29.
    Reddy, R.M., Guntupalli, K.K.: Review of ventilatory techniques to optimize mechanical ventilation in acute exacerbation of chronic obstructive pulmonary disease. Int. J. COPD 2(4), 441–452 (2007)Google Scholar
  30. 30.
    Farrow, S., Farrow, C., Soni, N.: Size matters: Choosing the right tracheal tube. Anaesthesia 67(8), 815–819 (2012)CrossRefGoogle Scholar
  31. 31.
    Zhang, Z., Kleinstreuer, C.: Low-reynolds-number turbulent flows in locally constricted conduits: a comparison study. AIAA J. 41(5), 831–840 (2003)CrossRefGoogle Scholar
  32. 32.
    Ahmed, S.A., Giddens, D.P.: Flow disturbance measurements through a constricted tube at moderate Reynolds numbers. J. Biomech. 16(12), 955–963 (1983)CrossRefGoogle Scholar
  33. 33.
    Kobashi, S., Kuramoto, K., Hat, Y.: Functional assessment of individual lung lobes with MDCT images, in Theory and Applications of CT Imaging and Analysis. InTech (2011)Google Scholar
  34. 34.
    Nowak, N., Kakade, P.P., Annapragada, A.V.: Computational fluid dynamics simulation of airflow and aerosol deposition in human lungs. Ann. Biomed. Eng. 31(4), 374–390 (2003)CrossRefGoogle Scholar
  35. 35.
    Feng, Y., Kleinstreuer, C.: Micron-particle transport, interactions and deposition in triple lung-airway bifurcations using a novel modeling approach. J. Aerosol Sci. 71, 1–15 (2014)CrossRefGoogle Scholar
  36. 36.
    Ostrovski, Y., Hofemeier, P., Sznitman, J.: Augmenting regional and targeted delivery in the pulmonary acinus using magnetic particles. Int. J. Nanomedicine 11, 3385–3395 (2016)CrossRefGoogle Scholar
  37. 37.
    Oakes, J.M., Breen, E.C., Scadeng, M., Tchantchou, G.S., Darquenne, C.: MRI-based measurements of aerosol deposition in the lung of healthy and elastase-treated rats. J. Appl. Physiol. 116(12), 1561–1568 (2014)CrossRefGoogle Scholar
  38. 38.
    Sanchis, J., Corrigan, C., Levy, M.L., Viejo, J.L.: Inhaler devices-From theory to practice. Respir. Med. 107(4), 495–502 (2013)CrossRefGoogle Scholar
  39. 39.
    Lizal, F., et al.: Experimental methods for flow and aerosol measurements in human airways and their replicas. Eur. J. Pharm. Sci. (2017)Google Scholar
  40. 40.
    Koullapis, P., et al.: Regional aerosol deposition in the human airways: The SimInhale benchmark case and a critical assessment of in silico methods. Eur. J. Pharm. Sci. (2017)Google Scholar
  41. 41.
    Zarogoulidis, P., et al.: Inhaled chemotherapy in lung cancer: Future concept of nanomedicine. Int. J. Nanomedicine 7, 1551–1572 (2012)CrossRefGoogle Scholar
  42. 42.
    Sul, B., Wallqvist, A., Morris, M.J., Reifman, J., Rakesh, V.: A computational study of the respiratory airflow characteristics in normal and obstructed human airways. Comput. Biol. Med. 52, 130–143 (2014)CrossRefGoogle Scholar
  43. 43.
    DeHaan, W.H., Finlay, W.H.: Predicting extrathoracic deposition from dry powder inhalers. J. Aerosol Sci. 35(3), 309–331 (2004)CrossRefGoogle Scholar
  44. 44.
    Lavorini, F.: The challenge of delivering therapeutic aerosols to asthma patients. ISRN Allergy 2013(1), 102418 (2013)Google Scholar
  45. 45.
    Sakagami, M., Byron, P.R.: Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin. Pharmacokinet. 44(3), 263–77 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Yan Ostrovski
    • 1
  • Simon Dorfman
    • 1
    • 2
  • Maksim Mezhericher
    • 2
    • 3
  • Stavros Kassinos
    • 4
  • Josué Sznitman
    • 1
    Email author
  1. 1.Department of Biomedical EngineeringTechnion - Israel Institute of TechnologyHaifaIsrael
  2. 2.Department of Mechanical EngineeringShamoon College of EngineeringBeer-ShevaIsrael
  3. 3.Department of Mechanical and Aerospace EngineeringPrinceton UniversityPrincetonUSA
  4. 4.Department of Mechanical EngineeringUniversity of CyprusNicosiaCyprus

Personalised recommendations