Advertisement

Flow, Turbulence and Combustion

, Volume 100, Issue 4, pp 1081–1099 | Cite as

Predicting Turbulent Spectra in Drag-reduced Flows

  • Davide GattiEmail author
  • Alexander Stroh
  • Bettina Frohnapfel
  • Yosuke Hasegawa
Article

Abstract

In the present work we describe how turbulent skin-friction drag reduction obtained through near-wall turbulence manipulation modifies the spectral content of turbulent fluctuations and Reynolds shear stress with focus on the largest scales. Direct Numerical Simulations (DNS) of turbulent channels up to Re τ = 1000 are performed in which drag reduction is achieved either via artificially removing wall-normal turbulent fluctuations in the vicinity of the wall or via streamwise-travelling waves of spanwise wall velocity. This near-wall turbulence manipulation is shown to modify turbulent spectra in a broad range of scales throughout the whole channel. Above the buffer layer, the observed changes can be predicted, exploiting the vertical shift of the logarithmic portion of the mean streamwise velocity profile, which is a classic performance measure for wall roughness or drag-reducing riblets. A simple model is developed for predicting the large-scale contribution to turbulent fluctuation and Reynolds shear stress spectra in drag-reduced turbulent channels in which a flow control acts at the wall. Any drag-reducing control that successfully interacts with large scales should deviate from the predictions of the present model, making it a useful benchmark for assessing the capability of a control to affect large scales directly.

Keywords

Wall turbulence Drag reduction Large-scale structure 

Notes

Acknowledgements

M. Quadrio is thanked for the many discussion on the subject.

References

  1. 1.
    Quadrio, M.: Drag reduction in turbulent boundary layers by in-plane wall motion. Phil. Trans. R. Soc. A 369(1940), 1428–1442 (2011)CrossRefGoogle Scholar
  2. 2.
    Ricco, P., Hahn, S.: Turbulent drag reduction through rotating discs. J. Fluid Mech. 722, 267–290 (2013).  https://doi.org/10.1017/jfm.2013.92 CrossRefzbMATHGoogle Scholar
  3. 3.
    Wise, D.J., Ricco, P.: Turbulent drag reduction through oscillating discs. J. Fluid Mech. 746, 536–564 (2014).  https://doi.org/10.1017/jfm.2014.122 CrossRefGoogle Scholar
  4. 4.
    Choi, H., Moin, P., Kim, J.: Active turbulence control for drag reduction in wall-bounded flows. J. Fluid Mech. 262, 75–110 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bechert, D., Bruse, M., Hage, W., Van der Hoeven, J., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)CrossRefGoogle Scholar
  6. 6.
    Rothstein, J.P.: Slip on superhydrophobic surfaces. Annu. Rev. Fluid Mech. 42 (1), 89–109 (2010).  https://doi.org/10.1146/annurev-fluid-121108-145558 CrossRefGoogle Scholar
  7. 7.
    Jiménez, J., Pinelli, A.: The autonomous cycle of near-wall turbulence. J. Fluid Mech. 389, 335–359 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Marusic, I., Mathis, R., Hutchins, N.: High Reynolds number effects in wall turbulence. Int. J. Heat Fluid Flow 31(3), 418–428 (2010)CrossRefGoogle Scholar
  9. 9.
    Abe, H., Kawamura, H., Choi, H.: Very large-scale structures and their effects on the wall shear-stress fluctuations in a turbulent channel flow up to R e τ = 640. J. Fluids Eng. 126(5), 835–843 (2004).  https://doi.org/10.1115/1.1789528 CrossRefGoogle Scholar
  10. 10.
    Agostini, L., Leschziner, M.: Predicting the response of small-scale near-wall turbulence to large-scale outer motions. Phys. Fluids 28(1), 015107 (2016).  https://doi.org/10.1063/1.4939712
  11. 11.
    De Giovannetti, M., Hwang, Y., Choi, H.: Skin-friction generation by attached eddies in turbulent channel flow. J. Fluid Mech. 808, 511–538 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hwang, Y., Bengana, Y.: Self-sustaining process of minimal attached eddies in turbulent channel flow. J. Fluid Mech. 795, 708–738 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Schlatter, P., Örlü, R., Li, Q., Brethouwer, G., Fransson, J.H.M., Johansson, A.V., Alfredsson, P.H., Henningson, D.S.: Turbulent boundary layers up to R e 𝜃=2500 studied through simulation and experiment. Phys. Fluids 21(5), 051702–051702-4 (2009)Google Scholar
  14. 14.
    Kasagi, N., Suzuki, Y., Fukagata, K.: Microelectromechanical systems–based feedback control of turbulence for skin friction reduction. Annu. Rev. Fluid Mech. 41(1), 231–251 (2009).  https://doi.org/10.1146/annurev.fluid.010908.165221 CrossRefzbMATHGoogle Scholar
  15. 15.
    Fukagata, K., Iwamoto, K., Kasagi, N.: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys. Fluids 14, L73–L76 (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Bewley, T.: A fundamental limit on the balance of power in a transpiration-controlled channel flow. J. Fluid Mech. 632, 443–446 (2009).  https://doi.org/10.1017/S0022112008004886 MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Frohnapfel, B., Hasegawa, Y., Quadrio, M.: Money versus time: evaluation of flow control in terms of energy consumption and convenience. J. Fluid Mech. 700, 406–418 (2012)CrossRefzbMATHGoogle Scholar
  18. 18.
    Fukagata, K., Kazuyasu, S., Kasagi, N.: On the lower bound of net driving power in controlled duct flows. Phys. D 238(13), 1082–1086 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Gatti, D., Quadrio, M.: Performance losses of drag-reducing spanwise forcing at moderate values of the Reynolds number. Phys. Fluids 25(17), 125,109 (2013)CrossRefGoogle Scholar
  20. 20.
    Gatti, D., Quadrio, M.: Reynolds-number dependence of turbulent skin-friction drag reduction induced by spanwise forcing. J. Fluid Mech. 802, 553–58 (2016)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Hurst, E., Yang, Q., Chung, Y.: The effect of Reynolds number on turbulent drag reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55 (2014)CrossRefGoogle Scholar
  22. 22.
    Iwamoto, K., Fukagata, K., Kasagi, N., Suzuki, Y.: Friction drag reduction achievable by near-wall turbulence manipulation at high Reynolds number. Phys. Fluids 17, 011,702 (2005).  https://doi.org/10.1063/1.1827276 CrossRefzbMATHGoogle Scholar
  23. 23.
    Agostini, L., Touber, E., Leschziner, M.A.: Spanwise oscillatory wall motion in channel flow: drag-reduction mechanisms inferred from dns-predicted phase-wise property variations at R e τ = 1000. J. Fluid Mech. 743, 606–635 (2014)CrossRefGoogle Scholar
  24. 24.
    Quadrio, M., Ricco, P., Viotti, C.: Streamwise-travelling waves of spanwise wall velocity for turbulent drag reduction. J. Fluid Mech. 627, 161–178 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    del Álamo, J., Jiménez, J.: Spectra of the very large anisotropic scales in turbulent channels. Phys. Fluids 15(6), L41–L44 (2003)CrossRefzbMATHGoogle Scholar
  26. 26.
    Hutchins, N., Marusic, I.: Large-scale influences in near-wall turbulence. Phil. Trans. R. Soc. A 365(1852), 647–664 (2007)CrossRefzbMATHGoogle Scholar
  27. 27.
    Kim, K., Adrian, R.J.: Very large-scale motion in the outer layer. Phys. Fluids 11(2), 417–422 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Fukagata I., Kobayashi, M., Kasagi, N.: On the friction drag reduction effect by a control of large-scale turbulent structures. J. Fluid Sci. Tech. 5(3), 574–584 (2010)CrossRefGoogle Scholar
  29. 29.
    Hasegawa, Y., Quadrio, M., Frohnapfel, B.: Numerical simulation of turbulent duct flows with constant power input. J. Fluid Mech. 750, 191–209 (2014)CrossRefGoogle Scholar
  30. 30.
    Auteri, F., Baron, A., Belan, M., Campanardi, G., Quadrio, M.: Experimental assessment of drag reduction by traveling waves in a turbulent pipe flow. Phys. Fluids 22(11), 115,103/14 (2010)CrossRefGoogle Scholar
  31. 31.
    Bird, J., Santer, M., Morrison, J.F.: Experimental control of turbulent boundary layers with in-plane travelling waves. Flow Turb Comb submitted (2018)Google Scholar
  32. 32.
    Quadrio, M., Ricco, P.: The laminar generalized Stokes layer and turbulent drag reduction. J. Fluid Mech. 667, 135–157 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jung, W., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4(8), 1605–1607 (1992)CrossRefGoogle Scholar
  34. 34.
    Schlichting, H.: Boundary-layer theory. McGraw Hill.Inc., New York (1979)zbMATHGoogle Scholar
  35. 35.
    Luchini, P., Quadrio, M.: A low-cost parallel implementation of direct numerical simulation of wall turbulence. J. Comput. Phys. 211(2), 551–571 (2006)CrossRefzbMATHGoogle Scholar
  36. 36.
    Russo, S., Luchini, P.: A fast algorithm for the estimation of statistical error in DNS (or experimental) time averages. J. Comput. Phys. 347, 328–340 (2017).  https://doi.org/10.1016/j.jcp.2017.07.005 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Thompson, R.L., Sampaio, L.E.B., Alves, F.A.V., Thais, L., Mompean, G.: A methodology to evaluate statistical errors in dns data of plane channel flows. Comp. Fluids 130, 1–7 (2016).  https://doi.org/10.1016/j.compfluid.2016.01.014. http://www.sciencedirect.com/science/article/pii/S0045793016300068 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Marusic, I., Joseph, D.D., Mahesh, K.: Laminar and turbulent comparisons for channel flow and flow control. J. Fluid Mech. 570, 467–477 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Jiménez, J., Moser, R.D.: What are we learning from simulating wall turbulence?. Phyl Trans R Soc A 365, 715–732 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Mizuno, J., Jiménez, J.: Mean velocity and length-scales in the overlap region of wall-bounded turbulent flows. Phys. Fluids 23(8), 085,112 (2011)CrossRefGoogle Scholar
  41. 41.
    Clauser, F.: The turbulent boundary layer. Adv. Appl. Mech. 4, 1–51 (1956)CrossRefGoogle Scholar
  42. 42.
    Jiménez, J.: Turbulent flows over rough walls. Annu. Rev. Fluid Mech. 36, 173–196 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    García-Mayoral, R., Jiménez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369(1940), 1412–1427 (2011)CrossRefGoogle Scholar
  44. 44.
    Luchini, P.: Reducing the turbulent skin friction. In: Desideri et al. (eds.) Computational methods in applied sciences, p 1996. Wiley, Hoboken (1996)Google Scholar
  45. 45.
    Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)zbMATHGoogle Scholar
  46. 46.
    Pope, S.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  47. 47.
    Spalart, P., McLean, J.: Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369(1940), 1556–1569 (2011)CrossRefGoogle Scholar
  48. 48.
    Philip, J.R.: Flows satisfying mixed no-slip and no-shear conditions. Zeitschrift fü,r angewandte Mathematik und Physik ZAMP 23(3), 353–372 (1972).  https://doi.org/10.1007/BF01595477 MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Townsend, A.: The structure of turbulent shear flows, 2nd edn. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar
  50. 50.
    Nickels, T., Marusic, I., Hafez, S., Hutchins, N., Chong, M.: Some predictions of the attached eddy model for a high reynolds number boundary layer. Phil. Trans. R. Soc. A 365(1852), 807–822 (2007).  https://doi.org/10.1098/rsta.2006.1950 CrossRefzbMATHGoogle Scholar
  51. 51.
    Cimarelli, A., De Angelis, E., Jiménez, J., Casciola, C.M.: Cascades and wall-normal fluxes in turbulent channel flows. J. Fluid Mech. 796, 417–436 (2016)CrossRefGoogle Scholar
  52. 52.
    Agostini, L., Leschziner, M.: The influence of outer large-scale structures on the near-wall layer of a channel flow subjected to oscillatory spanwise wall actuation. Flow Turb Comb submitted (2018)Google Scholar
  53. 53.
    Schlichting, H.: Experimentelle Untersuchungen zum Rauhigkeitsproblem. Ing. Arch. 7, 1–34 (1936). (Engl. Trans. 1937. Experimental investigation of the problem of surface roughness, NACA TM 823)CrossRefGoogle Scholar
  54. 54.
    Skote, M.M.M., Wu, Y.: Drag reduction of a turbulent boundary layer over an oscillating wall and its variation with reynolds number. Intl. J. Aerospace Eng. 2015, 1–9 (2015)CrossRefGoogle Scholar
  55. 55.
    Stroh, A., Frohnapfel, B., Schlatter, P., Hasegawa, Y.: A comparison of opposition control in turbulent boundary layer and turbulent channel flow. Phys. Fluids 27(7), 075,101 (2015).  https://doi.org/10.1063/1.4923234 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Karlsruhe Institute of TechnologyKarlsruheGermany
  2. 2.Institute of Industrial ScienceThe University of TokyoTokyoJapan

Personalised recommendations