Flow, Turbulence and Combustion

, Volume 100, Issue 4, pp 1145–1177 | Cite as

Non-Adiabatic Surface Effects on Step-Induced Boundary-Layer Transition

  • Marco CostantiniEmail author
  • Steffen Risius
  • Christian Klein


The effect on step-induced boundary-layer transition of surface temperatures different from the adiabatic-wall temperature was investigated for a (quasi-) two-dimensional flow at large Reynolds numbers and at both low and high subsonic Mach numbers. Sharp forward-facing steps were mounted on a flat plate and transition was studied non-intrusively by means of the temperature-sensitive paint technique. The experiments were conducted in the Cryogenic Ludwieg-Tube Göttingen with various streamwise pressure gradients and temperature differences between flow and model surface. A reduction of the ratio between surface and adiabatic-wall temperatures had a favorable influence on step-induced transition up to moderate values of the step Reynolds number and of the step height relative to the boundary-layer displacement thickness, leading to larger transition Reynolds numbers. However, at larger values of the non-dimensional step parameters, the increase in transition Reynolds number for a given reduction in the wall temperature ratio became smaller. Transition was found to be insensitive to changes in the wall temperature ratio for step Reynolds numbers above a certain value. Up to this limiting value, the relation between the relative change in transition location (with respect to its value for a smooth surface) and the non-dimensional step parameter was essentially unaffected by variations in the wall temperature ratio. The present choice of non-dimensional parameters allows the effect of the steps on transition to be isolated from the influence of variations in the other factors, provided that both transition locations on the step and smooth configurations are measured at the same conditions.


Transition Step Non-adiabatic surface Temperature-sensitive paint Boundary layer Surface imperfection Natural laminar flow TSP 



The authors would like to thank: S. Hein (DLR) for the support during the definition of the tests and the analysis of the results, and for the modification of COCO to account for the thermal boundary condition at the model surface; W. H. Beck (DLR) for the productive discussion of the results and for the help during the drafting of this work; S. Koch (DLR) for the assistance during the experimental campaign and the wind tunnel data evaluation; C. Fuchs and T. Kleindienst (DLR) for the support during the preparation of the model; U. Henne and W. E. Sachs (DLR) for the help in the TSP data analysis; V. Ondrus (University of Hohenheim) for the chemical development of the temperature-sensitive paint; R. Kahle, M. Aschoff and S. Hucke (DNW-KRG) for the support during the whole test campaign; L. Koop and H. Rosemann (DLR) for the constant advice during the definition and conduction of this project; W. Schröder (RWTH Aachen), A. Dillmann (DLR), W. Kühn and S. Schaber (Airbus) for their invaluable advice.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Vijgen, P.M.H.W., Dodbele, S.S., Holmes, B.J., van Dam, C.P.: Effects of compressibility on design of subsonic fuselages for natural laminar flow. J. Aircr. 25(9), 776–782 (1988)CrossRefGoogle Scholar
  2. 2.
    Braslow, A.L.: A history of suction-type laminar-flow control with Emphasis on flight research. Monogr. Aerosp. Hist. 13 (1999)Google Scholar
  3. 3.
    Joslin, R.D.: Aircraft laminar flow control. Annu. Rev. Fluid Mech. 30, 1–29 (1998)CrossRefGoogle Scholar
  4. 4.
    Schlichting, H., Gersten, K.: Boundary-layer theory, 8th edn. Springer-Verlag, Berlin (2000). Chap. 6: Boundary-Layer Equations in Plane Flow: Plate Boundary LayerCrossRefzbMATHGoogle Scholar
  5. 5.
    Holmes, B.J., Obara, C.J.: Observations and implications of natural laminar flow on practical airplane surfaces. J. Aircr. 20(12), 993–1006 (1983)CrossRefGoogle Scholar
  6. 6.
    Wagner, R.D., Bartlett, D.W., Collier, F.S. Jr.: Laminar flow the past, present, and prospects. AIAA Paper, No. 1989–0989 (1989)Google Scholar
  7. 7.
    Reshotko, E.: Boundary layer instability, transition and control. AIAA Paper, No. 1994–1 (1994)Google Scholar
  8. 8.
    Arnal, D.: Boundary Layer Transition: Prediction, Application to Drag Reduction. AGARD R-786, No. 5-1–5-59 (1992)Google Scholar
  9. 9.
    Schrauf, G.: Status and perspectives of laminar flow. Aeronaut. J 109(1102), 639–644 (2005)CrossRefGoogle Scholar
  10. 10.
    Holmes, B.J., Obara, C.J., Yip, L.P.: Natural Laminar Flow Experiments on Modern Airplane Surfaces. NASA Rep. TP-2256 (1984)Google Scholar
  11. 11.
    George, F.: Piaggio Aero P180 Avanti II. Bus. Comm. Aviat., pp. 116–125 (2007)Google Scholar
  12. 12.
    Hansen, H.: Laminar flow technology – the Airbus view. In: Proceedings of the 27th Congr. ICAS, pp. 453–461 (2010)Google Scholar
  13. 13.
    Stock, H.W.: Wind tunnel–flight correlation for laminar wings in adiabatic and heating flow conditions. Aerosp. Sci. Technol 6, 245–257 (2002)CrossRefGoogle Scholar
  14. 14.
    Holmes, B.J., Obara, C.J., Martin, G.L., Domack, C.S.: Manufacturing tolerances for natural laminar flow airframe surfaces. SAE Paper 850863 (1985)Google Scholar
  15. 15.
    Nayfeh, A.H.: Influence of two-dimensional imperfections on laminar flow. SAE Paper 921990 (1992)Google Scholar
  16. 16.
    Drake, A., Bender, A.M., Korntheuer, A.J., Westphal, R.V., McKeon, B.J., Gerashchenko, S., Rohe, W., Dale, G.: Step excrescence effects for manufacturing tolerances on laminar flow wings. AIAA Paper, No. 2010–375 (2010)Google Scholar
  17. 17.
    Rizzetta, D.P., Visbal, M.R.: Numerical simulation of excrescence generated transition. AIAA J. 52(2), 385–397 (2014)CrossRefGoogle Scholar
  18. 18.
    Nenni, J.P., Gluyas, G.L.: Aerodynamic design and analysis of an LFC surface. Aeronaut. Astronaut. 14(7), 52–57 (1966)Google Scholar
  19. 19.
    Perraud, J., Séraudie, A.: Effects of steps and gaps on 2D and 3D transition. In: Oñate, E., Bugeda, G., Suárez, B (eds.) Proc. ECCOMAS 2000. Technical University of Catalonia, Barcelona (2000)Google Scholar
  20. 20.
    Wang, Y.X., Gaster, M.: Effect of surface steps on boundary layer transition. Exp. Fluid 39(4), 679–686 (2005)CrossRefGoogle Scholar
  21. 21.
    Crouch, J.D., Kosorygin, V.S., Ng, L.L.: Modeling the effects of steps on boundary layer transition. In: Govindarajan, R. (ed.) Proc. Sixth IUTAM Symposium on Laminar-Turbulent Transition, pp. 37–44. Springer, Netherlands (2006)Google Scholar
  22. 22.
    Edelmann, C.A., Rist, U.: Impact of forward-facing steps on laminar-turbulent transition in subsonic flows. In: Dillmann, A., Heller, G., Krämer, E., Kreplin, H.-P., Nitsche, W., Rist, U. (eds.) New Results in Numerical and Experimental Fluid Mechanics IX, Notes Numer. Fluid Mech. Multidiscip. Des., vol. 124, pp. 155–162. Springer International Publishing (2014)Google Scholar
  23. 23.
    Edelmann, C.A., Rist, U.: Impact of forward-facing steps on laminar-turbulent transition in transonic flows. AIAA J 53(9), 2504–2511 (2015)CrossRefGoogle Scholar
  24. 24.
    Duncan, G.T. Jr., Crawford, B.K., Tufts, M.T., Saric, W.S., Reed, H.L.: Effects of step excrescences on swept-wing transition. AIAA Paper, No. 2013–2412 (2013)Google Scholar
  25. 25.
    Costantini, M., Risius, S., Klein, C.: Experimental investigation of the effect of forward-facing steps on boundary-layer transition. In: Medeiros, M.A.F., Meneghini, J.R (eds.) Procedia IUTAM 14 C, pp. 152–162. Elsevier, Amsterdam (2015)Google Scholar
  26. 26.
    Costantini, M., Risius, S., Klein, C., Kühn, W.: Effect of forward-facing steps on boundary layer transition at a subsonic Mach number. In: Dillmann, A., Heller, G., Krämer, E., Wagner, C., Breitsamter, C. (eds.) New Results in Numerical and Experimental Fluid Mechanics X, Notes Numer. Fluid Mech. Multidiscip. Des., vol. 132, pp. 203–213. Springer International Publishing (2016)Google Scholar
  27. 27.
    Lees, L., Lin, C.C.: Investigation of the stability of the laminar boundary layer in a compressible fluid. NACA Rep. TN-1115 (1946)Google Scholar
  28. 28.
    Mack, L.M.: Boundary-Layer Linear Stability Theory. AGARD R-709, pp. 3-1–3-81 (1984)Google Scholar
  29. 29.
    Schlichting, H., Gersten, K.: Boundary-layer theory, 8th edn. Springer-Verlag, Berlin (2000). Chap. 15: Onset of Turbulence (Stability Theory)CrossRefzbMATHGoogle Scholar
  30. 30.
    Reshotko, E.: Stability and transition - How much do we know?. In: Proc. U.S. Natl. Congr. Appl. Mech., pp. 421–434. ASME, New York (1987)Google Scholar
  31. 31.
    Liepmann, H.W., Fila, G.H.: Investigations of effects of surface temperature and single roughness elements on boundary-layer transition. NACA Rep 890 (1947)Google Scholar
  32. 32.
    Fisher, D.F., Dougherty Jr., N.S.: In-Flight Transition Measurement on a 10 Cone at Mach Numbers From 0.5 to 2.0. NASA Rep. TP-1971 (1982)Google Scholar
  33. 33.
    Costantini, M., Fey, U., Henne, U., Klein, C.: Nonadiabatic surface effects on transition measurements using temperature-sensitive paints. AIAA J 53(5), 1172–1187 (2015)CrossRefGoogle Scholar
  34. 34.
    Costantini, M., Hein, S., Henne, U., Klein, C., Koch, S., Schojda, L., Ondrus, V., Schröder, W.: Pressure gradient and non-adiabatic surface effects on boundary-layer transition. AIAA J 54(11), 3465–3480 (2016)CrossRefGoogle Scholar
  35. 35.
    Boehman, L.I., Mariscalco, M.G.: The stability of highly cooled compressible laminar boundary layers. USAF Flight Dynamics Lab Rep. TR-76-148 (1976)Google Scholar
  36. 36.
    Özgen, S.: Effect of heat transfer on stability and transition characteristics of boundary-layers. Int. J. Heat Mass. Transf. 47(22), 4697–4712 (2004)CrossRefzbMATHGoogle Scholar
  37. 37.
    Costantini, M.: The effect on boundary-layer transition of forward-facing steps, pressure gradient, and a non-adiabatic surface at Mach and Reynolds numbers relevant for transport aircraft. PhD thesis, RWTH Aachen (2016)Google Scholar
  38. 38.
    Rosemann. H.: The Cryogenic Ludwieg-Tube Tunnel at Göttingen. AGARD R-812, pp. 8-1–8-13 (1997)Google Scholar
  39. 39.
    Koch, S.: Zeitliche und räumliche Turbulenzentwicklung in einem Rohrwindkanal und deren Einfluss auf die Transition an Profilmodellen. DLR Rep FB 2004–19 (2004)Google Scholar
  40. 40.
    Liu, T., Sullivan, J.P.: Pressure and temperature sensitive paint. Springer-Verlag, Berlin (2005). Chap. 1: Introduction, and Chap. 2: Basic PhotophysicsGoogle Scholar
  41. 41.
    Tropea, C., Yarin, A.L., Foss, J.F.: Springer handbook of experimental fluid mechanics. Springer-Verlag, Berlin (2007). Chap. 7.4: Transition-Detection by Temperature-Sensitive PaintCrossRefGoogle Scholar
  42. 42.
    Ludwieg, H.: Der Rohrwindkanal. Z. Flugwiss 3(7), 206–216 (1955)Google Scholar
  43. 43.
    Amecke, J.: Direkte Berechnung von Wandinterferenzen und Wandadaption bei zweidimensionaler Strömung in Windkanälen mit geschlossenen Wänden. DFVLR Rep. FB 85–62 (1985)Google Scholar
  44. 44.
    Fey, U., Egami, Y., Klein, C.: Temperature-sensitive paint application in cryogenic wind tunnels: transition detection at high Reynolds numbers and influence of the technique on measured aerodynamic coefficients. In: 22nd ICIASF Record, pp. 1–17. IEEE, Piscataway, New Jersey (2007)Google Scholar
  45. 45.
    Klein, C., Henne, U., Sachs, W.E., Beifuss, U., Ondrus, V., Bruse, M., Lesjak, R., Löhr, M., Becher, A., Zhai, J.: Combination of temperature-sensitive paint (TSP) and carbon nanotubes (CNT) for transition detection. AIAA Paper, No. 2015–1558 (2015)Google Scholar
  46. 46.
    Ondrus, V., Meier, R., Klein, C., Henne, U., Schäferling, M., Beifuss, U.: Europium 1,3-di(thienyl)propane-1,3-diones with outstanding properties for temperature sensing. Sens. Actuat. A-Phys 233, 434–441 (2015)CrossRefGoogle Scholar
  47. 47.
    Meyer, F., Kleiser, L.: Numerical Investigation of Transition in 3D Boundary Layers. AGARD CP-438, pp. 16-1–16-17 (1989)Google Scholar
  48. 48.
    Fransson, J.H.N., Brandt, L., Talamelli, A., Cossu, C.: Experimental study of the stabilization of Tollmien-Schlichting waves by finite amplitude streaks. Phys. Fluid. 17(5), 054110–1–054110-15 (2005)CrossRefzbMATHGoogle Scholar
  49. 49.
    Kuester, M.S., Brown, K., Meyers, T., Intaratep, N., Borgoltz, A., Devenport, W.J.: Aerodynamic validation of wind turbine airfoil models in the Virginia tech stability wind tunnel. In: Proc. NAWEA 2015. Symposium, Virginia Tech. Blacksburg, Virginia (2015)Google Scholar
  50. 50.
    van Ingen, J.L.: The eN method for transition prediction. Historical review of work at tu delft. AIAA Paper, No. 2008–3830 (2008)Google Scholar
  51. 51.
    Schrauf, G.: LILO 2.1 – User’s Guide and Tutorial. GSSC Tech. Rep, 6 (2006)Google Scholar
  52. 52.
    Schrauf, G.: COCO – A Program to Compute Velocity and Temperature Profiles for Local and Nonlocal Stability Analysis of Compressible, Conical Boundary Layers with Suction. Zarm Technik Rep (1998)Google Scholar
  53. 53.
    Al-Maaitah, A.A., Nayfeh, A.H., Ragab, S.A.: Effect of wall cooling on the stability of compressible subsonic flow over smooth humps and backward-facing humps. Phys. Fluid. A 2(3), 381–389 (1990)CrossRefzbMATHGoogle Scholar
  54. 54.
    Al-Maaitah, A.A., Nayfeh, A.H., Ragab, S.A.: Effect of suction on the stability of subsonic flows over smooth backward-facing steps. AIAA J. 28(11), 1916–1924 (1990)CrossRefzbMATHGoogle Scholar
  55. 55.
    Hahn, M., Pfenninger, W.: Prevention of transition over a backward step by suction. J. Aircr. 10(10), 618–622 (1973)CrossRefGoogle Scholar
  56. 56.
    Mabey, D.G.: A summary of effects of heat transfer in aerodynamics and possible implications for wind tunnel tests. AIAA Paper, No. 1991–401 (1991)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Aerodynamics and Flow Technology, DLR (German Aerospace Center)GoettingenGermany

Personalised recommendations