Advertisement

A Hierarchical Numerical Journey Through the Nasal Cavity: from Nose-Like Models to Real Anatomies

  • Andreas Lintermann
  • Wolfgang Schröder
Article
  • 114 Downloads

Abstract

The immense increase of computational power in the past decades led to an evolution of numerical simulations in all kind of engineering applications. New developments in medical technologies in rhinology employ computational fluid dynamics methods to explore pathologies from a fluid-mechanics point of view. Such methods have grown mature and are about to enter daily clinical use to support doctors in decision making. In light of the importance of effective respiration on patient comfort and health care costs, individualized simulations ultimately have the potential to revolutionize medical diagnosis, drug delivery, and surgery planning. The present article reviews experiments, simulations, and algorithmic approaches developed at RWTH Aachen University that have evolved from fundamental physical analyses using nose-like models to patient-individual analyses based on realistic anatomies and high resolution computations in hierarchical manner.

Keywords

Nasal cavity flows Particle-image velocimetry Finite volume method Lattice-Boltzmann method High performance computing 

Notes

Acknowledgements

The authors of this manuscript would like to thank Dr.-Ing. Ingolf Hörschler and Dr.-Ing. Matthias Meinke for the provision of visual material and fruitful discussions. The research for this project has been conducted under DFG research grant WE-2186/5. Furthermore, the authors gratefully acknowledge the computing time granted by the JARA-HPC Vergabegremium and provided on the JARA-HPC Partition, part of the supercomputer JUQUEEN [58] at Forschungszentrum Jülich and the Gauss Centre for Supercomputing (GCS) for providing computing time through the John von Neumann Institute for Computing (NIC) on the GCS share of JUQUEEN and the HERMIT at HLRS Stuttgart. GCS is the alliance of the three national supercomputing centers HLRS (Universität Stuttgart), JSC (Forschungszentrum Jülich), and LRZ (Bayerische Akademie der Wissenschaften), funded by the German Federal Ministry of Education and Research (BMBF) and the German State Ministries for Research of Baden-Württemberg (MWK), Bayern (StMWFK) and Nordrhein-Westfalen (MIWF).

Compliance with Ethical Standards

This study was funded by the German Research Foundation (DFG) under research grant number WE-2186/5.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Maune, S., Rudert, H., Heissenberg, M., Schmidt, C., Eggers, S., Landmann, K., Küchler, T.: Concepts for measuring quality of life in patients with chronic sinusitis. Laryngorhinootologie 78(9), 475 (1999).  https://doi.org/10.1055/s-2007-996912 CrossRefGoogle Scholar
  2. 2.
    Damm, M., Quante, G., Jungehuelsing, M., Stennert, E.: Impact of functional endoscopic sinus surgery on symptoms and quality of life in chronic rhinosinusitis. Laryngoscope 112(2), 310 (2002).  https://doi.org/10.1097/00005537-200202000-00020 CrossRefGoogle Scholar
  3. 3.
    Croy, I., Hummel, T., Pade, A., Pade, J.: Quality of life following nasal surgery. Laryngoscope 120(4), 826 (2010).  https://doi.org/10.1002/lary.20824 CrossRefGoogle Scholar
  4. 4.
    Stammberger, H., Posawetz, W.: Functional endoscopic sinus surgery. Concept, indications and results of the Messerklinger technique. Eur. Arch. Otorhinolaryngol. 247(2), 63 (1990)CrossRefGoogle Scholar
  5. 5.
    Giles, W.C., Gross, C.W., Abram, A.C., Greene, W.M., Avner, T.G.: Endoscopie septoplasty. Laryngoscope 104(12), 1507 (1994).  https://doi.org/10.1288/00005537-199412000-00015 CrossRefGoogle Scholar
  6. 6.
    Hol, M.K., Huizing, E.H.: Treatment of inferior turbinate pathology: a review and critical evaluation of the different techniques. Rhinology 38(4), 157 (2000)Google Scholar
  7. 7.
    Senior, B.A., Kennedy, D.W., Tanabodee, J., Kroger, H., Hassab, M., Lanza, D.: Long-term results of functional endoscopic sinus surgery. Laryngoscope 108(2), 151 (1998)CrossRefGoogle Scholar
  8. 8.
    Chhabra, N., Houser, S.M.: The diagnosis and management of empty nose syndrome. Otolaryngol. Clin. North Am. 42(2), 311 (2009).  https://doi.org/10.1016/j.otc.2009.02.001 CrossRefGoogle Scholar
  9. 9.
    Batra, P.S., Seiden, A.M., Smith, T.L.: Surgical management of adult inferior turbinate hypertrophy. Laryngoscope 119(9), 1819 (2009).  https://doi.org/10.1002/lary.20544 CrossRefGoogle Scholar
  10. 10.
    Bhandarkar, N.D., Smith, T.L.: Outcomes of surgery for inferior turbinate hypertrophy. Curr. Opin. Otolaryngol. Head Neck Surg. 18(1), 49 (2010).  https://doi.org/10.1097/MOO.0b013e328334d974 CrossRefGoogle Scholar
  11. 11.
    Adams, L., Krybus, W., Meyer-Ebrecht, D., Rueger, R., Gilsbach, J., Moesges, R., Schloendorff, G.: Computer-assisted surgery. IEEE Comput. Graph. Appl. 10(3), 43 (1990).  https://doi.org/10.1109/38.55152 CrossRefGoogle Scholar
  12. 12.
    Hörschler, I., Meinke, M., Schröder, W.: Numerical simulation of the flow field in a model of the nasal cavity. Comput. Fluids 32(1), 39 (2003).  https://doi.org/10.1016/S0045-7930(01)00097-4 CrossRefzbMATHGoogle Scholar
  13. 13.
    Hörschler, I., Brücker, C., Schröder, W., Meinke, M.: Investigation of the impact of the geometry on the nose flow. Eur. J. Mech. B. Fluids 25(4), 471 (2006).  https://doi.org/10.1016/j.euromechflu.2005.11.006 CrossRefzbMATHGoogle Scholar
  14. 14.
    Hörschler, I., Schröder, W., Meinke, M.: Comparison of steady and unsteady nasal cavity flow solutions for the complete respiration cycle. Comput. Fluid Dyn. J. 15(3), 354 (2006)Google Scholar
  15. 15.
    Hörschler, I., Schröder, W.: On the geometry dependence of the nose flow. In: van Steenhoven, A. (ed.) Ercoftac Bulletin, vol. 68 (2006)Google Scholar
  16. 16.
    Hörschler, I., Schröder, W., Meinke, M.: On the assumption of steadiness of nasal cavity flow. J. Biomech. 43(6), 1081 (2010).  https://doi.org/10.1016/j.jbiomech.2009.12.008 CrossRefGoogle Scholar
  17. 17.
    Naftali, S., Schroter, R.C., Shiner, R.J., Elad, D.: Transport phenomena in the human nasal cavity: a computational model. Ann. Biomed. Eng. 26(5), 831 (1998)CrossRefGoogle Scholar
  18. 18.
    Naftali, S., Rosenfeld, M., Wolf, M., Elad, D.: The air-conditioning capacity of the human nose. Ann. Biomed. Eng. 33(4), 545 (2005).  https://doi.org/10.1007/s10439-005-2513-4 CrossRefGoogle Scholar
  19. 19.
    Finck, M., Hänel, D., Wlokas, I.: Simulation of nasal flow by lattice Boltzmann methods. Comput. Biol. Med. 37(6), 739 (2007).  https://doi.org/10.1016/j.compbiomed.2006.06.013 CrossRefGoogle Scholar
  20. 20.
    Elad, D., Naftali, S., Rosenfeld, M., Wolf, M.: Physical stresses at the air-wall interface of the human nasal cavity during breathing. J. Appl. Physiol. 100(3), 1003 (2006).  http://doi.org/10.1152/japplphysiol.01049.2005 CrossRefGoogle Scholar
  21. 21.
    Zachow, S., Steinmann, A., Hildebrandt, Th., Weber, R., Heppt, W.: CFD simulation of nasal airflow: Towards treatment planning for functional rhinosurgery. Int. J. Comput. Assist. Radiol. Surg. 1(S1), 147–167 (2006).  https://doi.org/10.1007/s11548-006-0018-8 CrossRefGoogle Scholar
  22. 22.
    Yu, S., Liu, Y., Sun, X., Li, S.: Exploiting lustre file joining for effective collective IO. Rhinology 46(2), 137 (2008)Google Scholar
  23. 23.
    Riazuddin, V.N., Zubair, M., Shuaib, I.L., Abdullah, M.Z., Hamid, S.A., Ahmad, K.A.: Numerical study of inspiratory and expiratory flow in a human nasal cavity. J. Med. Biol. Eng. 31(3), 201 (2010).  https://doi.org/10.5405/jmbe.781 CrossRefGoogle Scholar
  24. 24.
    Eitel, G., Freitas, R.K., Lintermann, A., Meinke, M., Schröder, W.: Numerical simulation of nasal cavity flow based on a Lattice-Boltzmann method. In: Dillmann, A., Heller, G., Klaas, M., Kreplin, H.-P., Nitsche, W., Schröder, W. (eds.) New Results in Numerical and Experimental Fluid Mechanics VII, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 112, pp 513–520. Springer, Berlin (2010)Google Scholar
  25. 25.
    Lintermann, A., Eitel-Amor, G., Meinke, M., Schröder, W.: Lattice-Boltzmann solutions with local grid refinement for nasal cavity flows. In: New Results in Numerical and Experimental Fluid Mechanics VIII, pp 583–590. Springer (2013),  https://doi.org/10.1007/978-3-642-35680-3_69
  26. 26.
    Lintermann, A., Meinke, M., Schröder, W.: Fluid mechanics based classification of the respiratory efficiency of several nasal cavities. Comput. Biol. Med. 43(11), 1833 (2013).  https://doi.org/10.1016/j.compbiomed.2013.09.003 CrossRefGoogle Scholar
  27. 27.
    Lintermann, A., Meinke, M., Schröder, W.: Investigations of nasal cavity flows based on a Lattice-Boltzmann method. In: Resch, M., Wang, X., Bez, W., Focht, E., Kobayashi, H., Roller, S. (eds.) High Performance Computing on Vector Systems 2011, pp 143–158. Springer, Berlin (2012),  https://doi.org/10.1007/978-3-642-22244-3
  28. 28.
    Lintermann, A., Meinke, M., Schröder, W.: Investigations of the inspiration and heating capability of the human nasal cavity based on a Lattice-Boltzmann method. In: Proceedings of the ECCOMAS Thematic International Conference on Simulation and Modeling of Biological Flows (SIMBIO 2011), vol. 2011, Brussels (2011)Google Scholar
  29. 29.
    Gambaruto, A., Taylor, D., Doorly, D.: Modelling nasal airflow using a Fourier descriptor representation of geometry. Int. J. Numer. Methods Fluids 59(11), 1259 (2009).  https://doi.org/10.1002/fld.1866 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Gambaruto, A.M., Taylor, D.J., Doorly, D.J.: Decomposition and description of the nasal cavity form. Ann. Biomed. Eng. 40(5), 1142 (2012).  https://doi.org/10.1007/s10439-011-0485-0 CrossRefGoogle Scholar
  31. 31.
    Calmet, H., Gambaruto, A.M., Bates, A.J., Vázquez, M., Houzeaux, G., Doorly, D.J.: Large-scale CFD simulations of the transitional and turbulent regime for the large human airways during rapid inhalation. Comput. Biol. Med. 69, 166 (2016).  https://doi.org/10.1016/j.compbiomed.2015.12.003 CrossRefGoogle Scholar
  32. 32.
    Henn, T., Thäter, G., Dörfler, W., Nirschl, H., Krause, M.J.: Parallel dilute particulate flow simulations in the human nasal cavity. Comput. Fluids 124, 197 (2016).  https://doi.org/10.1016/j.compfluid.2015.08.002 MathSciNetCrossRefGoogle Scholar
  33. 33.
    Shang, Y., Inthavong, K., Tu, J.: Detailed micro-particle deposition patterns in the human nasal cavity influenced by the breathing zone. Comput. Fluids 114, 141 (2015).  https://doi.org/10.1016/j.compfluid.2015.02.020 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Bates, A.J., Doorly, D.J., Cetto, R., Calmet, H., Gambaruto, A.M., Tolley, N.S., Houzeaux, G., Schroter, R.C.: Dynamics of airflow in a short inhalation. J. R. Soc. Interface 12(102), 20140880 (2014).  https://doi.org/10.1098/rsif.2014.0880 CrossRefGoogle Scholar
  35. 35.
    Lintermann, A.: Efficient parallel geometry distribution for the simulation of complex flows. In: Papadrakakis, M., Papadopoulos, V., Stefanou, G., Plevris, V. (eds.) VII European Congress on Computational Methods in Applied Sciences and Engineering, Hersonissos (2016)Google Scholar
  36. 36.
    Engelhardt, L., Röhm, M., Mavoungou, C., Schindowski, K., Schafmeister, A., Simon, U.: First steps to develop and validate a CFPD model in order to support the design of nose-to-brain delivered biopharmaceuticals. Pharm. Res. (2016).  https://doi.org/10.1007/s11095-016-1875-7
  37. 37.
    Wilcox, D.C.: Turbulence Modeling for CFD, 3rd edn. DCW Industries, Inc. ISBN 978-1928729082 (2006)Google Scholar
  38. 38.
    Grotjans, H., Menter, F.: Wall functions for industrial applications. In: Papailiou, K.D. (ed.) Computational fluid dynamics ’98, ECCOMAS, pp 1112–1117. Wiley, New York (1998)Google Scholar
  39. 39.
    Chien, K.Y.: Predictions of channel and boundary-layer flows with a low-Reynolds-number turbulence model. AIAA J. 20(1), 33 (1982).  https://doi.org/10.2514/3.51043 CrossRefzbMATHGoogle Scholar
  40. 40.
    Smagorinsky, J.: General circulation experiments with the primitive equations. Mon. Weather Rev. 91(3), 99 (1963).  10.1175/1520-0493(1963)091%3C0099:GCEWTP%3E2.3.CO;2 CrossRefGoogle Scholar
  41. 41.
    Lintermann, A., Schlimpert, S., Grimmen, J., Günther, C., Meinke, M., Schröder, W.: Massively parallel grid generation on HPC systems. Comput. Methods Appl. Mech. Eng. 277, 131 (2014).  https://doi.org/10.1016/j.cma.2014.04.009 MathSciNetCrossRefGoogle Scholar
  42. 42.
    Raffel, M., Willert, C., Wereley, S., Kompenhans, J.: Particle image velocimetry, 2nd edn.. In: Experimental Fluid Mechanics. Springer, Berlin (2007),  https://doi.org/10.1007/978-3-540-72308-0
  43. 43.
    Brücker, C., Park, K.I.: Experimental study of velocity fields in a model of human nasal cavity by DPIV. In: Banerjee, S., Eaton, K. (eds.) First International Symposium on Turbulence and Shear Flow Phenomena, Santa Barbara, pp 831–842 (1999)Google Scholar
  44. 44.
    Masing, H.: Experimentelle Untersuchungen über die Strömung im Nasenmodell. Eur. Arch. Otorhinolaryngol. 189(1), 59 (1967)Google Scholar
  45. 45.
    Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 10(3), 43–51 (1990).  https://doi.org/10.1109/34.295913 Google Scholar
  46. 46.
    Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM SIGGRAPH Computer Graphics 21(4), 163 (1987)CrossRefGoogle Scholar
  47. 47.
    Nolden, M., Zelzer, S., Seitel, A., Wald, D., Müller, M., Franz, A.M., Maleike, D., Fangerau, M., Baumhauer, M., Maier-Hein, L., Maier-Hein, K.H., Meinzer, H.P., Wolf, I.: The medical imaging interaction toolkit: challenges and advances : 10 years of open-source development. Int. J. Comput. Assist. Radiol. Surg. 8(4), 607 (2013).  https://doi.org/10.1007/s11548-013-0840-8 CrossRefGoogle Scholar
  48. 48.
    Ibanez, L., Schroeder, W., Ng, L., Cates, J.: The ITK Software Guide, 1st edn. Kitware, Inc., ISBN 1-930934-10-6 (2003)Google Scholar
  49. 49.
    Schroeder, W., Ken, M., Lorensen, B.: The Visualization Toolkit, 4th edn. Kitware, Inc., ISBN 978-1-930934-19-1 (2006)Google Scholar
  50. 50.
    Taubin, G., Zhang, T., Golub, G.: Optimal surface smoothing as filter design. Computer Vision—ECCV’96 20404, 283 (1996)Google Scholar
  51. 51.
    GridPro, The CFD Link to Design, The Graphic Manager Manual. Programm Development Corp. 300 Hamilton Ave. Suite 409, White Plains, N.Y. 10601, USAGoogle Scholar
  52. 52.
    Freitas, R.K., Schröder, W.: Numerical investigation of the three-dimensional flow in a human lung model. J. Biomech. 41(11), 2446 (2008).  https://doi.org/10.1016/j.jbiomech.2008.05.016 CrossRefGoogle Scholar
  53. 53.
    Hartmann, D., Meinke, M., Schröder, W.: An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods. Comput. Fluids 37(9), 1103 (2008).  https://doi.org/10.1016/j.compfluid.2007.06.007 MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Karypis, G., Kumar, V.: A parallel algorithm for multilevel graph partitioning and sparse matrix ordering. J. Parallel Distrib. Comput. 48(1), 71 (1998).  https://doi.org/10.1006/jpdc.1997.1403 CrossRefGoogle Scholar
  55. 55.
    UCAR/Unidata, NetCDF library 3.x, Boulder. (2003).  https://doi.org/10.5065/D6RN35XM
  56. 56.
    Folk, M., Pourmal, E.: Balancing performance and preservation lessons learned with HDF5. In: Proceedings of the 2010 Roadmap for Digital Preservation Interoperability Framework Workshop on - US-DPIF ’10.  https://doi.org/10.1145/2039274.2039285, pp 1–8 (2010)
  57. 57.
    Li, J., Zingale, M., Liao, W. k., Choudhary, A., Ross, R., Thakur, R., Gropp, W., Latham, R., Siegel, A., Gallagher, B.: Parallel netCDF: a high-performance scientific I/O interface. In: Proceedings of the 2003 ACM/IEEE conference on Supercomputing - SC ’03.  https://doi.org/10.1145/1048935.1050189, p 39. ACM Press, New York (2003)
  58. 58.
    Stephan, M., Docter, J.: JUQUEEN: IBM blue gene/Q®; supercomputer system at the Jülich supercomputing centre. Journal of Large-Scale Research Facilities JLSRF 1, A1 (2015).  https://doi.org/10.17815/jlsrf-1-18 CrossRefGoogle Scholar
  59. 59.
    Yu, W., Vetter, J., Canon, R.S., Jiang, S.: Exploiting lustre file joining for effective collective IO. In: Seventh IEEE International Symposium on Cluster Computing and the Grid (CCGrid ’07).  https://doi.org/10.1109/CCGRID.2007.51, pp 267–274. IEEE (2007)
  60. 60.
    Liou, M.S., Steffen, C.J.: A new flux splitting scheme. J. Comput. Phys. 107 (1), 23 (1993).  https://doi.org/10.1006/jcph.1993.1122 MathSciNetCrossRefzbMATHGoogle Scholar
  61. 61.
    van Leer, B.: Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. J. Comput. Phys. 32(1), 101 (1979).  https://doi.org/10.1016/0021-9991(79)90145-1 CrossRefzbMATHGoogle Scholar
  62. 62.
    Choi, H., Moin, P.: Effects of the computational time step on numerical solutions of turbulent flow. J. Comput. Phys. 113(1), 1 (1994).  https://doi.org/10.1006/jcph.1994.1112 CrossRefzbMATHGoogle Scholar
  63. 63.
    Saint-Vernant, B., Wantzel, L.: Mémoire et expérience sur l’écoulement déterminé par des différences de pressions considérables. Journal de l’École Polytechnique H.27, 85ff (1839)Google Scholar
  64. 64.
    Bhatnagar, P.L., Gross, E.P., Krook, M.: A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Phys. Rev. 94(3), 511 (1954).  https://doi.org/10.1103/PhysRev.94.511 CrossRefzbMATHGoogle Scholar
  65. 65.
    Hänel, D.: Molekulare Gasdynamik, Einführung in die kinetische Theorie der Gase und Lattice-Boltzmann-Methoden. Springer, Berlin (2004)zbMATHGoogle Scholar
  66. 66.
    Qian, Y.H., D’Humières, D., Lallemand, P.: Lattice BGK models for Navier-Stokes equation. Europhysics Letters (EPL) 17(6), 479 (1992).  https://doi.org/10.1209/0295-5075/17/6/001 CrossRefzbMATHGoogle Scholar
  67. 67.
    Dupuis, A., Chopard, B.: Theory and applications of an alternative lattice Boltzmann grid refinement algorithm. Phys. Rev. E. 67(6), 1 (2003).  https://doi.org/10.1103/PhysRevE.67.066707 CrossRefGoogle Scholar
  68. 68.
    Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452 (2001).  https://doi.org/10.1063/1.1399290 CrossRefzbMATHGoogle Scholar
  69. 69.
    Schreck, S., Sullivan, K.J., Ho, C.M., Chang, H.K.: Correlations between flow resistance and geometry in a model of the human nose. J. Appl. Physiol. (Bethesda, Md. : 1985) 75(4), 1767 (1993)Google Scholar
  70. 70.
    Vogt, K., Hoffrichter, H.: Neue Strömungsphysikalische Erkenntnisse in der Rhinomanometrie und ihre praktischen Konsequenzen. In: Mösges, S. (ed.) Topische Therapie der allergischen Rhinitis, Biermann, Germany, pp 45–60 (1993)Google Scholar
  71. 71.
    Benninger, M., Senior, B.: The development of the rhinosinusitis disability index. Arch. Otolaryngol. Head Neck Surg. 123(11), 1175 (1997).  https://doi.org/10.1001/archotol.1997.01900110025004 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of AerodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Jülich Aachen Research Alliance, High Performance Computing (JARA-HPC)RWTH Aachen UniversityAachenGermany

Personalised recommendations