Advertisement

Flow, Turbulence and Combustion

, Volume 100, Issue 3, pp 593–616 | Cite as

Data-Free and Data-Driven RANS Predictions with Quantified Uncertainty

  • W. N. EdelingEmail author
  • G. Iaccarino
  • P. Cinnella
Article

Abstract

For the purpose of estimating the epistemic model-form uncertainty in Reynolds-Averaged Navier-Stokes closures, we propose two transport equations to locally perturb the Reynolds stress tensor of a given baseline eddy-viscosity model. The spatial structure of the perturbations is determined by the proposed transport equations, and thus does not have to be inferred from full-field reference data. Depending on a small number of model parameters and the local flow conditions, a ’return to eddy viscosity’ is described, and the underlying baseline state can be recovered. In order to make predictions with quantified uncertainty, we identify two separate methods, i.e. a data-free and data-driven approach. In the former no reference data is required and computationally inexpensive intervals are computed. When reference data is available, Bayesian inference can be applied to obtained informed distributions of the model parameters and simulation output.

Keywords

RANS modeling Uncertainty quantification Bayesian inference Return to eddy viscosity Lag model 

Notes

Compliance with Ethical Standards

This investigation was funded by the United States Department of Energy’s (DoE) National Nuclear Security Administration (NNSA) under the Predictive Science Academic Alliance Program II (PSAAP II) at Stanford University.

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Slotnick, J., Khodadoust, A., Alonso, J., Darmofal, D., Gropp, W., Lurie, E., Mavriplis, D.: Cfd vision 2030 study: a path to revolutionary computational aerosciences (2014)Google Scholar
  2. 2.
    Cheung, S.H., Oliver, T.A., Prudencio, E.E., Prudhomme, S., Moser, R.D.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Safe 96(9), 1137–1149 (2011)CrossRefGoogle Scholar
  3. 3.
    Edeling, W.N., Cinnella, P., Dwight, R.P., Bijl, H.: Bayesian estimates of parameter variability in the k– ε turbulence model. J. Comp. Phys. 258, 73–94 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Hoeting, J.A., Madigan, D., Raftery, A.E., Volinsky, C.T.: Bayesian model averaging: a tutorial. Stat. Sci. 14, 382–401 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Edeling, W.N., Cinnella, P., Dwight, R.P.: Predictive rans simulations via bayesian model-scenario averaging. J. Comp. Phys. 275, 65–91 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in reynolds-averaged navier-stokes closures. Phys. Fluids 25(11), 110822 (2013)CrossRefGoogle Scholar
  7. 7.
    Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for reynolds-averaged navier-stokes simulations. Phys. Fluids 25(5), 055105 (2013)CrossRefGoogle Scholar
  8. 8.
    Olsen, M.E., Coakley, T.J.: The lag model, a turbulence model for non equilibrium flows. In: AIAA Computational Fluid Dynamics Conference, 15 th, Anaheim, CA (2001)Google Scholar
  9. 9.
    Pope, S.B.: Turbulent flows (2001)Google Scholar
  10. 10.
    Wilcox, D.C.: Turbulence modeling for cfd (1998)Google Scholar
  11. 11.
    Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J. Turbul. 8, N32 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kindlmann, G.: Superquadric tensor glyphs. In: Proceedings of the 6th Joint Eurographics-IEEE TCVG conference on Visualization, pages 147–154. Eurographics Association (2004)Google Scholar
  13. 13.
    Ramachandran, P., Varoquaux, G.: Mayavi: 3d visualization of scientific data. Comput. Sci. Eng. 13(2), 40–51 (2011)CrossRefGoogle Scholar
  14. 14.
    Emory, M., Pecnik, R., Iaccarino, G.: Modeling structural uncertainties in reynolds-averaged computations of shock/boundary layer interactions. AIAA Paper 479, 2011 (2011)Google Scholar
  15. 15.
    Gorlé, C., Emory, M., Larsson, J., Iaccarino, G.: Epistemic uncertainty quantification for rans modeling of the flow over a wavy wall. Center for Turbulence Research, Annual Research Briefs (2012)Google Scholar
  16. 16.
    Lillard, R.P., Oliver, A.B., Olsen, M.E., Blaisdell, G.A., Lyrintzis, A.S.: The lagrst model: a turbulence model for non-equilibrium flows. AIAA Paper 444, 2012 (2012)Google Scholar
  17. 17.
    Rotta, J.C.: Statistische theorie nichthomogener turbulenz. Zeitschrift für Physik 129(6), 547–572 (1951)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Revell, A.J., Benhamadouche, S., Craft, T., Laurence, D.: A stress–strain lag eddy viscosity model for unsteady mean flow. Int. J. Heat Fluid Fl. 27(5), 821–830 (2006)CrossRefGoogle Scholar
  19. 19.
    Ling, J., Templeton, J.: Evaluation of machine learning algorithms for prediction of regions of high reynolds averaged navier stokes uncertainty. Phys. Fluids 27(8), 085103 (2015)CrossRefGoogle Scholar
  20. 20.
    Langley Research Center Turbulence Modeling Resource. Axisymmetric subsonic jet. https://turbmodels.larc.nasa.gov/jetsubsonic_val.html, 2017. [Retrieved February-2017]
  21. 21.
    Lay, D.C: Linear algebra and its applications (2006)Google Scholar
  22. 22.
    Schumann, U.: Realizability of reynolds-stress turbulence models. Phys. Fluids 20(5), 721–725 (1977)CrossRefzbMATHGoogle Scholar
  23. 23.
    Durbin, P.A., Speziale, C.G.: Realizability of second-moment closure via stochastic analysis. J. Fluid Mech. 280, 395–407 (1994)CrossRefzbMATHGoogle Scholar
  24. 24.
    Edeling, W.N., Iaccarino, G., Cinnella, P.: A return to eddy viscosity model for epistemic uq in rans closures. Center for Turbulence Research, Annual Research Briefs (2016)Google Scholar
  25. 25.
    Le, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over a backward-facing step. J. fluid Mech. 330(1), 349–374 (1997)CrossRefzbMATHGoogle Scholar
  26. 26.
    Gelman, A., Carlin, J.B., Stern, H.S., Rubin, D.B.: Bayesian data analysis, vol. 2. Chapman & Hall/CRC, Boca Raton (2014)zbMATHGoogle Scholar
  27. 27.
    Kennedy, M.C., O’Hagan, A.: Bayesian calibration of computer models. J. Roy. Stat. Soc. B 63(3), 425–464 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Oliver, T.A., Moser, R.D.: Bayesian uncertainty quantification applied to rans turbulence models. In: J Phys Conf Ser, volume 318, page 042032. IOP Publishing (2011)Google Scholar
  29. 29.
    Chib, S., Greenberg, E.: Understanding the metropolis-hastings algorithm. Am. Stat. 49(4), 327–335 (1995)Google Scholar
  30. 30.
    Marzouk, Y., Xiu, D.: A stochastic collocation approach to bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826–847 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Witteveen, J.A.S., Doostan, A., Pecnik, R., Iaccarino, G.: Uncertainty quantification of the transonic flow around the rae 2822 airfoil. Center for Turbulence Research, Annual Briefs, Stanford University (2009)Google Scholar
  32. 32.
    Edeling, W.N., Dwight, R.P., Cinnella, P.: Simplex-stochastic collocation method with improved scalability. J. Comp. Phys. 310, 301–328 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Ghanem, R., Spanos, P.D.: Polynomial chaos in stochastic finite elements. J. Appl. Mech. 57(1), 197–202 (1990)CrossRefzbMATHGoogle Scholar
  34. 34.
    Witteveen, J.A.S., Iaccarino, G.: Simplex stochastic collocation with random sampling and extrapolation for nonhypercube probability spaces. SIAM J. Sci. Comput. 34(2), A814—A838 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Dongbin, X., Karniadakis, G.E.: The wiener–askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput. 24(2), 619–644 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Bridges, J., Wernet, M.P.: The nasa subsonic jet particle image velocimetry (piv) dataset (2011)Google Scholar
  37. 37.
    Le, H., Moin, P.: Direct numerical simulation of turbulent flow over a backward-facing step, Center for Turbulence Research, Annual Briefs, Stanford University (1992)Google Scholar
  38. 38.
    Jovic, S., Driver, D.M.: Backward-facing step measurements at low reynolds number, r e h = 5000, NASA Technical Memorandum, (108807) (1994)Google Scholar
  39. 39.
    Thangam, S., Speziale, C.G.: Turbulent flow past a backward-facing step-a critical evaluation of two-equation models. AIAA J. 30(5), 1314–1320 (1992)CrossRefGoogle Scholar
  40. 40.
    Iaccarino, G., Mishra, A.A., Ghili, S.: Eigenspace perturbations for uncertainty estimation of single-point turbulence closures. Phys. Rev. Fluids 2(2), 024605 (2017)CrossRefGoogle Scholar
  41. 41.
    Mishra, A., Iaccarino, G.: Rans predictions fo high-speed flows using enveloping models, Center for Turbulence Research, Annual Research Briefs (2016)Google Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Center for Turbulence ResearchStanford UniversityStanfordUSA
  2. 2.Laboratoire DynFluidArts et Métiers ParisTechParisFrance

Personalised recommendations