Flow, Turbulence and Combustion

, Volume 99, Issue 3–4, pp 685–703 | Cite as

VLES Modeling of Flow Over Walls with Variably-shaped Roughness by Reference to Complementary DNS

  • Benjamin KrumbeinEmail author
  • Pourya Forooghi
  • Suad Jakirlić
  • Franco Magagnato
  • Bettina Frohnapfel


Turbulent flow over variably-shaped rough walls, characterized by either a regular or a random arrangement of axisymmetric roughness elements in an open channel flow configuration, is investigated computationally within a VLES (Very Large Eddy Simulation) framework by utilizing a volumetric forcing-based roughness model. The prime objective of the present work is to assess the roughness model’s capability to predict mean velocities and turbulent intensities in conjunction with this recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model. The friction velocity-based Reynolds number is in the range Reτ = 460 − 500. A non-dimensional drag function accounting for the shape of the roughness elements is introduced and evaluated based on the results of complementary direct numerical simulations (DNS). The dynamics of the residual motion of the presently adopted VLES methodology is described by an appropriately modified elliptic-relaxation-based ζf (\(\zeta =\overline {v^{2}}/k\)) RANS model.


DNS Hybrid LES/RANS (VLES) Elliptic relaxation eddy-viscosity model of turbulence Volumetric-forcing-based roughness modeling Open channel flow 



The financial support of the German Research Foundation (DFG) in the framework of the Collaborative Research Center/Transregio 150 (TP-B03 and TP-B02) is gratefully acknowledged. The authors furthermore would like to thank for the computing time granted on the Lichtenberg HPC at TU Darmstadt.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Bhaganagar, K., Kim, J., Coleman, G.: Effect of roughness in wall-bounded turbulence. Flow, Turbul. Combust. 72, 463–492 (2004)CrossRefzbMATHGoogle Scholar
  2. 2.
    Nikuradse, J.: Strömungsgesetze in rauen Rohren. VDI-Forschungshefte Band 361 (1933)Google Scholar
  3. 3.
    Taylor, R.P., Coleman, H.W., Hodge, B.K.: Prediction of turbulent rough-wall skin friction using a discrete element approach. ASME J. Fluids Eng. 107, 251–257 (1985)CrossRefGoogle Scholar
  4. 4.
    Miyake, Y., Tsujimoto, K., Agata, Y.: A DNS of a turbulent flow in a rough-wall channel using roughness elements model. JSME Int. J. Series B 43(2), 233–242 (2000)CrossRefGoogle Scholar
  5. 5.
    Busse, A., Sandham, N.D.: Parametric forcing approach to rough-wall turbulent channel flow. J. Fluid Mech. 712, 169–202 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Forooghi, P., Stroh, A., Magagnato, F., Jakirlic, S., Frohnapfel, B.: Towards a universal roughness correlation. ASME J. Fluids Eng. 139(12), 121201–12201-12 (2017)CrossRefGoogle Scholar
  7. 7.
    Tarada, F.: Prediction of rough-wall boundary layers using a low Reynolds number kε model. Int. J. Heat Fluid Flow 11(4), 331–345 (1990)CrossRefGoogle Scholar
  8. 8.
    Stripf, M., Schulz, A., Bauer, H.-J., Wittig, S.: Extended models for transitional rough wall boundary layers with heat transferpart I: model formulations. J. Turbomach. 131(3), 031016 (2009)CrossRefGoogle Scholar
  9. 9.
    Bons, J.P., Taylor, R.P., McClain, S.T., Rivir, R.B.: The many faces of turbine surface roughness. J. Turbomach. 123(4), 739–748 (2001)CrossRefGoogle Scholar
  10. 10.
    Speziale, C.G.: Turbulence modeling for time-dependent RANS and VLES: A review. AIAA J. 36(2), 173–184 (1998)CrossRefzbMATHGoogle Scholar
  11. 11.
    Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model (PITM) for coarse grid and unsteady turbulent flow simulations. Theoret. Comput. Fluid Dyn. 18(6), 443–468 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Basara, B., Krajnovic, S., Girimaji, S., Pavlovic, Z.: Near-wall formulation of the partially averaged navier-stokes (PANS) turbulence model. AIAA J. 49(12), 2627–2636 (2011)CrossRefGoogle Scholar
  13. 13.
    Hanjalić, K., Popovac, M., Hadz̆iabdić, M.: A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD. Int. J. Heat Fluid Flow 25, 1047–1051 (2004)CrossRefGoogle Scholar
  14. 14.
    Chang, C.-Y., Jakirlić, S., Dietrich, K., Basara, B., Tropea, C.: Swirling flow in a tube with variably-shaped outlet orifices: an LES and VLES study. Int. J. Heat Fluid Flow 49, 28–42 (2014)CrossRefGoogle Scholar
  15. 15.
    Chang, C.-Y., Krumbein, B., Jakirlic, S., Tropea, C., Basara, B., Sadiki, A., Janicka, J., Böhm, B., Dreizler, A., Peterson, B.: Flow dynamics in IC-engine configurations simulated by scale-resolving models. International Multidimensional Engine Modeling (IMEM) User’s Group Meeting at the SAE Congress, Detroit, MI (2016)Google Scholar
  16. 16.
    Jakirlic, S., Kutej, L., Hanssmann, D., Basara, B., Tropea, C.: Eddy-resolving Simulations of the Notchback DrivAer Model: Influence of Underbody Geometry and Wheels Rotation on Aerodynamic Behaviour. SAE Technical Paper Series, Paper No. 2016-01-1062 (2016)Google Scholar
  17. 17.
    Aupoix, B.: Improved heat transfer predictions on rough surfaces. Int. J. Heat Fluid Flow 56, 160–171 (2015)CrossRefGoogle Scholar
  18. 18.
    Belcher, S.E., Jerram, N., Hunt, J.C.R.: Adjustment of a turbulent boundary layer to a canopy of roughness elements. J. Fluid Mech. 488, 369–398 (2003)CrossRefzbMATHGoogle Scholar
  19. 19.
    Stripf, M., Schulz, A., Bauer, H.-J.: Modeling of rough-wall boundary layer transition and heat transfer on turbine airfoils. J. Turbomach. 130(2), 021003 (2008)CrossRefGoogle Scholar
  20. 20.
    Ashravian, A., Andersson, H.I., Manhart, M.: DNS of turbulent flow in a rod-roughened channel. Int. J. Heat Fluid Flow 25, 373–383 (2004)CrossRefGoogle Scholar
  21. 21.
    Chevalier, M., Schlatter, P., Lundbladh, A., Henningson, D.S.: SIMSON – A pseudo-spectral solver for incompressible boundary layer flow. KTH Mechanics, Stockholm (2007)Google Scholar
  22. 22.
    Goldstein, D., Handler, R., Sirovich, L.: Modeling a no-slip flow boundary with an external force field. J. Comput. Phys. 105(2), 354–366 (1993)CrossRefzbMATHGoogle Scholar
  23. 23.
    Chan-Braun, C., Garcia-Villalba, M., Uhlmann, M.: Force and torque acting on particles in a transitionally rough open-channel flow. J. Fluid Mech. 684, 441–474 (2011)CrossRefzbMATHGoogle Scholar
  24. 24.
    Townsend, A.A.: The structure of of turbulent shear flow, 2nd edn. Cambridge University Press, Cambridge (1976)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Benjamin Krumbein
    • 1
    Email author
  • Pourya Forooghi
    • 2
  • Suad Jakirlić
    • 1
  • Franco Magagnato
    • 2
  • Bettina Frohnapfel
    • 2
  1. 1.Institute of Fluid Mechanics and AerodynamicsTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Karlsruhe Institute of TechnologyInstitute of Fluid MechanicsKarlsruheGermany

Personalised recommendations