Flow, Turbulence and Combustion

, Volume 99, Issue 3–4, pp 729–763 | Cite as

LES-based Study of the Roughness Effects on the Wake of a Circular Cylinder from Subcritical to Transcritical Reynolds Numbers

  • Ivette Rodriguez
  • Oriol Lehmkuhl
  • Ugo Piomelli
  • Jorge Chiva
  • Ricard Borrell
  • Assensi Oliva
Article

Abstract

This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.

Keywords

LES Vortex shedding Wakes Roughness 

Notes

Acknowledgments

We acknowledge “Red Española de Surpercomputación” (RES) for awarding us access to the MareNostrum III machine based in Barcelona, Spain (Ref. FI-2015-2-0026 and FI-2015-3-0011). We also acknowledge PRACE for awarding us access to Fermi and Marconi Supercomputers at Cineca, Italy (Ref. 2015133120). Oriol Lehmkuhl acknowledges a PDJ 2014 Grant by AGAUR (Generalitat de Catalunya). Ugo Piomelli acknowledges the support of the Natural Sciences and Engineering Research Council (NSERC) of Canada under the Discovery Grant Programme (Grant No. RGPIN-2016-04391). Ricard Borrell acknowledges a Juan de la Cierva postdoctoral grant (IJCI-2014-21034). Ivette Rodriguez, Oriol Lehmkuhl, Ricard Borrell and Assensi Oliva acknowledge Ministerio de Economía y Competitividad, Secretaría de Estado de Investigación, Desarrollo e Innovación, Spain (ref. ENE2014-60577-R).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.

References

  1. 1.
    Flack, K.A., Schultz, M.P.: Roughness effects on wall-bounded turbulent flows. Phys. Fluids 26, 101,305 (2014).  https://doi.org/10.1063/1.4896280 CrossRefGoogle Scholar
  2. 2.
    Jimenez, J.: Turbulent flows over rough walls. Ann. Rev. Fluid Mech. 36(1), 173–196 (2004).  https://doi.org/10.1146/annurev.fluid.36.050802.122103 MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)CrossRefGoogle Scholar
  4. 4.
    Achenbach, E., Heinecke, E.: On vortex shedding from smooth and rough cylinders in the range of Reynolds numbers 6e3 to 5e6. J. Fluid Mech. 109, 239–251 (1981)CrossRefGoogle Scholar
  5. 5.
    Roshko, A.: Experiments on the flow past a circular cylinder at very high Reynolds number. J. Fluid Mech. 10(3), 345–356 (1961).  https://doi.org/10.1017/S0022112061000950 CrossRefMATHGoogle Scholar
  6. 6.
    Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Ann. Rev. Fluid Mech. 28(1), 477–539 (1996).  https://doi.org/10.1146/annurev.fl.28.010196.002401 MathSciNetCrossRefGoogle Scholar
  7. 7.
    Bursnall, W., Loftin, L.J.: Experimental investigation of the pressure distribution about a yawed circular cylinder in the critical Reynolds number range. Technical report TN 2463, NACA (1951)Google Scholar
  8. 8.
    Delany, N., Sorensen, N.: Low-speed drag of cylinders of various shapes. Technical report TN 3038, NACA (1953)Google Scholar
  9. 9.
    Lehmkuhl, O., Rodríguez, I., Borrell, R., Chiva, J., Oliva, A.: Unsteady forces on a circular cylinder at critical Reynolds numbers. Phys. Fluids 26(12), 125,110 (2014).  https://doi.org/10.1063/1.4904415 CrossRefGoogle Scholar
  10. 10.
    Rodríguez, I., Lehmkuhl, O., Chiva, J., Borrell, R., Oliva, A.: On the flow past a circular cylinder from critical to super-critical Reynolds numbers: Wake topology and vortex shedding. International Journal of Heat and Fluid Flow (2015)  https://doi.org/10.1016/j.ijheatfluidflow.2015.05.009
  11. 11.
    Schewe, G.: On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to transcritical Reynolds numbers. J. Fluid Mech. 133, 265–285 (1983)CrossRefGoogle Scholar
  12. 12.
    Wieselsberger, C.: New data on the laws of fluid resistance. Technical report TN 84, NACA (1921)Google Scholar
  13. 13.
    Achenbach, E.: Influence of surface roughness on the cross-flow around a circular cylinder. J. Fluid Mech. 46(2), 321–335 (1971)CrossRefGoogle Scholar
  14. 14.
    Szechenyi, E.: Supercritical Reynolds number simulation for two-dimensional flow over circular cylinders. J. Fluid Mech. 70, 529–542 (1975)CrossRefGoogle Scholar
  15. 15.
    Fage, A., Warsap, J.: The effects of turbulence and surface roughness on the drag of a circular cylinder. Technical report. R&M 1283, Aeronautical Research Council (1929)Google Scholar
  16. 16.
    Güven, O., Farell, C., Patel, V.C.: Surface-roughness effects on the mean flow past circular cylinders. J. Fluid Mech. 98(4), 673 (1980).  https://doi.org/10.1017/S0022112080000341 CrossRefGoogle Scholar
  17. 17.
    Shih, W., Wang, C., Coles, D., Roshko, A.: Experiments on flow past rough circular cylinders at large Reynolds numbers. J. Wind Eng. Ind. Aerodyn. 49, 351–368 (1993)CrossRefGoogle Scholar
  18. 18.
    Batham, J.P.: Pressure distributions on circular cylinders at critical Reynolds numbers. J. Fluid Mech. 57(2), 209 (1973).  https://doi.org/10.1017/S0022112073001114 CrossRefGoogle Scholar
  19. 19.
    Buresti, G.: The Effect of Surface Roughness on the flow regime around circular cylinders. J. Wind Eng. Ind. Aerodyn. 8, 105–114 (1981)CrossRefGoogle Scholar
  20. 20.
    Nakamura, Y., Tomonari, Y.: The effects of surface roughness on the flow past circular cylinders at high Reynolds numbers. J. Fluid Mech. 123, 363–378 (1982).  https://doi.org/10.1017/S0022112082003103 CrossRefGoogle Scholar
  21. 21.
    Ribeiro, J.L.D.: Effects of surface roughness on the two- dimensional flow past circular cylinders II : fluctuating forces and pressures wind section. J. Wind Eng. Ind. Aerodyn. 37, 311–326 (1991)CrossRefGoogle Scholar
  22. 22.
    Ribeiro, J.L.D.: Effects of surface roughness on the two-dimensional flow past circular cylinders I : mean forces and pressures. J. Wind Eng. Ind. Aerodyn. 37, 299–309 (1991)CrossRefGoogle Scholar
  23. 23.
    Lee, S.J., Lim, H.C., Han, M., Lee, S.S.: Flow control of circular cylinder with a V-grooved micro-riblet film. Fluid Dyn. Res. 37(4), 246–266 (2005).  https://doi.org/10.1016/j.fluiddyn.2005.05.002 CrossRefMATHGoogle Scholar
  24. 24.
    Quintavalla, S.J., Angilella, A.J., Smits, A.J.: Drag reduction on grooved cylinders in the critical Reynolds number regime. Exp. Thermal Fluid Sci. 48, 15–18 (2013).  https://doi.org/10.1016/j.expthermflusci.2013.01.018 CrossRefGoogle Scholar
  25. 25.
    Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. AdvGeophys 18A, 237–248 (1975)Google Scholar
  26. 26.
    Yuan, J., Piomelli, U.: Numerical simulations of sink-flow boundary layers over rough surfaces. Phys. Fluids 26, 015,113 (2014).  https://doi.org/10.1063/1.4862672 CrossRefGoogle Scholar
  27. 27.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow, Turbul. Combust. 62, 183–200 (1999).  https://doi.org/10.1023/A:1009995426001 CrossRefMATHGoogle Scholar
  28. 28.
    Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X., Oliva, A.: Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numer. Heat Transf. Part B: Fund. 54(1), 53–79 (2014)CrossRefGoogle Scholar
  29. 29.
    Trias, F.X., Lehmkuhl, O., Oliva, A., Pérez-Segarra, C.D., Verstappen, R.W.C.P.: Symmetry-preserving discretization of Navier-Stokes equations on collocated unstructured grids. J. Comput. Phys. 258, 246–267 (2014).  https://doi.org/10.1016/j.jcp.2013.10.031 MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Trias, F.X., Lehmkuhl, O.: A self-adaptive strategy for the time integration of Navier-Stokes equations. Numer. Heat Transf. Part B 60(2), 116–134 (2011).  https://doi.org/10.1080/10407790.2011.594398 CrossRefGoogle Scholar
  31. 31.
    Rodríguez, I., Borrell, R., Lehmkuhl, O., Pérez-Segarra, C.D., Oliva, A.: Direct numerical simulation of the flow over a sphere at Re = 3700. J. Fluid Mech. 679, 263–287 (2011).  https://doi.org/10.1017/jfm.2011.136 CrossRefMATHGoogle Scholar
  32. 32.
    Scotti, A.: Direct numerical simulation of turbulent channel flows with boundary roughned with virtual sandpaper. Phys. Fluids 18, 031,701 (2006)CrossRefGoogle Scholar
  33. 33.
    Yuan, J., Piomelli, U.: Estimation and prediction of the roughness function on realistic surfaces. J. Turbul. 15(6), 350–365 (2014).  https://doi.org/10.1080/14685248.2014.907904 MathSciNetCrossRefGoogle Scholar
  34. 34.
    Yuan, J., Piomelli, U.: Numerical simulation of a spatially developing accelerating boundary layer over roughness. J. Fluid Mech. 780, 192–214 (2015).  https://doi.org/10.1017/jfm.2015.437 MathSciNetCrossRefGoogle Scholar
  35. 35.
    Borrell, R., Lehmkuhl, O., Trias, F.X., Oliva, A.: Parallel direct Poisson solver for discretisations with one Fourier diagonalisable direction. Comput. Phys. 230 (12), 4723–4741 (2011).  https://doi.org/10.1016/j.jcp.2011.02.042 MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    Borrell, R., Chiva, J., Lehmkuhl, O., Oyarzun, G., Rodriguez, I., Oliva, A.: Optimising the Termofluids CFD code for petascale simulations. Int. J. Comput. Fluid Dyn. 30(6), 425–430 (2016).  https://doi.org/10.1080/10618562.2016.1221503 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Aljure, D., Lehmkhul, O., Rodríguez, I., Oliva, A.: Three dimensionality in the wake of the flow around a circular cylinder at Reynolds number 5000. Comput Fluids 147, 102–118 (2017).  https://doi.org/10.1016/j.compfluid.2017.02.004 MathSciNetCrossRefGoogle Scholar
  38. 38.
    Lehmkuhl, O., Rodríguez, I., Borrell, R., Oliva, A.: Low-frequency unsteadiness in the vortex formation region of a circular cylinder. Phys. Fluids 25, 085,109 (2013).  https://doi.org/10.1063/1.4818641 CrossRefGoogle Scholar
  39. 39.
    Mansy, H., Yang, P., Williams, D.: Quantitative measurements of three-dimensional structures in the wake of a cylinder. J. Fluid Mech. 270, 277–296 (1994)CrossRefGoogle Scholar
  40. 40.
    Norberg, C.: Ldv measurements in the near wake of a circular cylinder. In: Proceedings of the ASME conference on advances in the understanding of bluff body wakes and vortex induced vibration. Washington (1998)Google Scholar
  41. 41.
    Humphreys, J.S.: On a circular cylinder in a steady wind at transition Reynolds numbers. J. Fluid Mech. 9(4), 603–612 (1960).  https://doi.org/10.1017/S0022112060001341 CrossRefMATHGoogle Scholar
  42. 42.
    Pope, S.B.: Turbulent flows. Cambridge University Press, Cambridge (2000)CrossRefMATHGoogle Scholar
  43. 43.
    West, G., Apelt, C.: Blockage and aspect ratio effects on flow past a circular cylinder for 104 < R e < 105. Technical Report No. CE 29. University of Queensland, Australia (1981)Google Scholar
  44. 44.
    Bearman, P.W.: On vortex shedding from a circular cylinder in the critical Reynolds number regime. J. Fluid Mech. 37, 577–585 (1969)CrossRefGoogle Scholar
  45. 45.
    Ünal, U., Atlar, M.: An experimental investigation into the effect of vortex generators on the near-wake flow of a circular cylinder. Exp. Fluids 48, 1059–1079 (2010).  https://doi.org/10.1007/s00348-009-0791-6 CrossRefGoogle Scholar
  46. 46.
    Roshko, A.: On the development of turbulent wakes from vortex streets. Technical Report NACA TR 1191, California Institute of Technology (1954)Google Scholar
  47. 47.
    Roshko, A.: On the drag and shedding frequency of two-dimensional bluff bodies. Technical Report TN3169, National Advisory Committee for Aeronautics (1954)Google Scholar
  48. 48.
    Adachi, T.: Effects of surface roughness on the universal Strouhal number over the wide Reynolds number range. J. Wind Eng. Ind. Aerodyn. 69-71, 399–412 (1997)CrossRefGoogle Scholar
  49. 49.
    Yarusevych, S., Sullivan, P.E., Kawall, J.G.: On vortex shedding from an airfoil in low-Reynolds-number flows. J. Fluid Mech. 632, 245 (2009)CrossRefMATHGoogle Scholar
  50. 50.
    Yeung, W.: On pressure invariance, wake width and drag prediction of a bluff body in confined flow. J. Fluid Mech. 622, 321–344 (2009).  https://doi.org/10.1017/S0022112008005247 CrossRefMATHGoogle Scholar
  51. 51.
    Norberg, C.: Interaction between freestream turbulence and vortex shedding for a single tube in cross-flow. J. Wind Eng. Ind. Aerodyn. 23, 501–514 (1986)CrossRefGoogle Scholar
  52. 52.
    Prasad, A., Williamson, C.: The instability of the shear layer separating from a bluff body. J. Fluid Mech. 333, 375–402 (1997)Google Scholar
  53. 53.
    Rajagopalan, S., Antonia, R.A.: Flow around a circular cylinder structure of the near wake shear layer. Exp. Fluids 38(4), 393–402 (2005).  https://doi.org/10.1007/s00348-004-0913-0 CrossRefGoogle Scholar
  54. 54.
    Okamoto, T.: Turbulent shear flow behind hemisphere-cylinder placed on ground plane. In: Turbulent Shear Flows 2, pp 171–185 (1982)Google Scholar
  55. 55.
    Hajimirzaie, S.M., Tsakiris, A.G., Buchholz, J.H.J., Papanicolaou, A.N.: Flow characteristics around a wall-mounted spherical obstacle in a thin boundary layer. Exper. Fluids 55(6) (2014).  https://doi.org/10.1007/s00348-014-1762-0
  56. 56.
    Dutta, R., Nicolle, J., Giroux, A.M., Piomelli, U.: Evaluation of turbulence models on roughened turbine blades. IOP Conf. Ser. Earth Environ. Sci. 49, 062007 (2016).  https://doi.org/10.1088/1755-1315/49/6/062007 CrossRefGoogle Scholar
  57. 57.
    Townsend, A.A.: The structure of turbulent shear flow. Cambridge University Press, Cambridge (1976)MATHGoogle Scholar
  58. 58.
    Dong, S., Karniadakis, G.E., Ekmekci, A., Rockwell, D.: A combined direct numerical simulation-particle image velocimetry study of the turbulent near wake. J. Fluid Mech. 569, 185 (2006)CrossRefMATHGoogle Scholar
  59. 59.
    Cantwell, B., Coles, D.: An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder. J. Fluid Mech. 136, 321–374 (1983).  https://doi.org/10.1017/S0022112083002189 CrossRefGoogle Scholar
  60. 60.
    Ma, X., Karamanos, G., Karniadakis, G.: Dynamics and low-dimensionality of a turbulent wake. J. Fluid Mech. 410, 29–65 (2000)MathSciNetCrossRefMATHGoogle Scholar
  61. 61.
    Ekmekci, A., Rockwell, D.: Effects of a geometrical surface disturbance on flow past a circular cylinder: a large-scale spanwise wire. J. Fluid Mech. 665, 120–157 (2010).  https://doi.org/10.1017/S0022112010003848 CrossRefMATHGoogle Scholar
  62. 62.
    Schlichting, H.: Boundary layer theory, 7th edn. McGraw-Hill Inc., New York (1979)MATHGoogle Scholar
  63. 63.
    Nikuradse, J.: Laws of Flow in rough pipes. Translation of Stromungsgesetze in rauhen Rohren. VDI-Forschungsheft 361. 1933. Translated to English. Tech. Rep. NACA TM 1292 (1950)Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Turbulence and Aerodynamics Research Group (TUAREG)Universitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Centre Tecnològic de Transferència de Calor (CTTC)Universitat Politècnica de CatalunyaTerrassaSpain
  3. 3.Barcelona Supercomputing Centre (BSC)BarcelonaSpain
  4. 4.Department of Mechanical and Materials EngineeringQueen’s UniversityKingstonCanada

Personalised recommendations