Flow, Turbulence and Combustion

, Volume 100, Issue 2, pp 535–559 | Cite as

3D Numerical Simulation of a Laminar Experimental SWQ Burner with Tabulated Chemistry

  • A. HeinrichEmail author
  • S. Ganter
  • G. Kuenne
  • C. Jainski
  • A. Dreizler
  • J. Janicka


Flame-wall interaction (FWI) plays an important role in enclosed combustion systems. For avoiding the complexity of close to reality combustors, in this study an atmospheric premixed V-shaped flame interacting with an isothermal cold wall in a side wall quenching (SWQ) configuration is investigated. A stoichiometric methane/air mixture is used as fuel. A three-dimensional (3D) numerical simulation, which resolves all flow structures is combined with a tabulated chemistry approach (flamelet generated manifold, FGM). Results are compared with experimental data and two-dimensional simulations. The FGM approach is a suitable trade-off between computationally expensive detailed chemistry simulations and over simplified single step mechanisms. 2D simulations are used to investigate the influence of the uncertainty of the wall temperature, to show that the resolution in 3D is sufficient and that the influence of the flame thickening on the wall heat fluxes can be determined. Our results show that the 3D FGM approach is in close agreement to experimentally obtained flow and temperature fields. The dimensionless wall heat flux and Péclet number matches the expected values of 0.16 and 7, respectively. However, during FWI the measured CO mole fractions are not reproduced accurately showing that the transported variables in the present approach of tabulated chemistry do not recover premixed flame structures near walls.


SWQ FGM Methane Laminar Flame wall interaction 



Financial support by Deutsche Forschungsgemeinschaft (DFG) through grants SFB/TRR 150 and in the framework of the Excellence Initiative, Darmstadt Graduate School of Energy Science and Engineering (GSC 1070) is gratefully acknowledged. All computations were performed on the Lichtenberg High Performance Computer of TU Darmstadt.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    BP, Statistical review of world energy (2016)Google Scholar
  2. 2.
    Alkidas, A.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Progress Energy Combust. Sci. 25, 253–273 (1999)CrossRefGoogle Scholar
  3. 3.
    Dreizler, A., Boehm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRefGoogle Scholar
  4. 4.
    Cheng, R., Bill, R., Robben, F.: Eighteenth symposium (international) on combustion experimental study of combustion in a turbulent boundary layer. Symp. (Int.) Combust. 18(1), 1021–1029 (1981)CrossRefGoogle Scholar
  5. 5.
    Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)CrossRefzbMATHGoogle Scholar
  6. 6.
    Saffman, M.: Parametric studies of a side wall quench layer. Combust. Flame 55(2), 141–159 (1984)CrossRefGoogle Scholar
  7. 7.
    Ezekoye, O., Greif, R., Sawyer, R.: Twenty-fourth symposium on combustion increased surface temperature effects on wall heat transfer during unsteady flame quenching. Symp. (Int.) Combust. 24(1), 1465–1472 (1992)CrossRefGoogle Scholar
  8. 8.
    Lu, J., Ezekoye, O., Greif, R., Sawyer, R.: Twenty-third symposium (international) on combustion unsteady heat transfer during side wall quenching of a laminar flame. Symp. (Int.) Combust. 23(1), 441–446 (1991)CrossRefGoogle Scholar
  9. 9.
    Bellenoue, M., Kageyama, T., Labuda, S., Sotton, J.: Direct measurement of laminar flame quenching distance in a closed vessel. Exp. Therm Fluid Sci. 27(3), 323–331 (2003)CrossRefGoogle Scholar
  10. 10.
    Boust, B., Sotton, J., Labuda, S., Bellenoue, M.: A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149(3), 286–294 (2007)CrossRefGoogle Scholar
  11. 11.
    Alshaalan, T.M., Rutland, C.J.: Twenty-seventh sysposium (international) on combustion volume one turbulence, scalar transport, and reaction rates in flame-wall interaction. Symp. (Int.) Combust. 27(1), 793–799 (1998)CrossRefGoogle Scholar
  12. 12.
    Van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRefGoogle Scholar
  13. 13.
    Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRefGoogle Scholar
  14. 14.
    Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Modell. 7(3), 449–470 (2003)CrossRefGoogle Scholar
  15. 15.
    Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)CrossRefGoogle Scholar
  16. 16.
    Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)CrossRefGoogle Scholar
  17. 17.
    Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91, 867–893 (2013)CrossRefGoogle Scholar
  18. 18.
    Jainski, C.: Experimentelle Untersuchung der turbulenten Flamme-Wand-Interaktion. PhD thesis, TU Darmstadt, Darmstadt (2016)Google Scholar
  19. 19.
    Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017)CrossRefGoogle Scholar
  20. 20.
    Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction, Proceedings of the Combustion Institute (2016)Google Scholar
  21. 21.
    Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame–wall interactions: Experimental analysis using spectroscopic temperature and co concentration measurements. Combust. Flame 161(9), 2371–2386 (2014)CrossRefGoogle Scholar
  22. 22.
    Hahn, F., Olbricht, C., Janicka, J.: Study of various configurations under variable density mixing conditions aiming on gas turbine combustion using les, vol. 0. ASME Turbo Expo, Berlin (2008)CrossRefGoogle Scholar
  23. 23.
    Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1d Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 159, 2669–2689 (2012)CrossRefGoogle Scholar
  24. 24.
    Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3), 528–536 (2004). Turbulence and Shear Flow Phenomena (TSFP-3)CrossRefGoogle Scholar
  25. 25.
    Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes, pp. 372–378. Springer Berlin Heidelberg, Berlin (1995)zbMATHGoogle Scholar
  26. 26.
    Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: Proceedings of ASME Turbo Expo 2009, Orlando, Florida, USA, p. 11 (2009)Google Scholar
  27. 27.
    CHEM1D: A one-dimensional laminar flame code, developed at Eindhoven University of Technology, Accessed Feb 2016
  28. 28.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Gardiner, W.C., Jr., Lissianski, V.V., Qin, Z.: GRI-Mech 3.0, Accessed Feb 2016
  29. 29.
    Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRefGoogle Scholar
  30. 30.
    Butler, T., O’Rourke, P.: A numerical method for two dimensional unsteady reacting flows. Symp. Int. Combust. 16(1), 1503–1515 (1977)CrossRefGoogle Scholar
  31. 31.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefzbMATHGoogle Scholar
  32. 32.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)CrossRefGoogle Scholar
  33. 33.
    Poinsot, T., Veynante, D.: Theoretical and numerical combustion, Second Edition. R.T. Edwards, Inc., 2 ed. 1 (2005)Google Scholar
  34. 34.
    Van Oijen, J., Donini, A., Bastiaans, R., Ten Thije Boonkkamp, J., De Goey, L.: State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress Energy Combust. Sci. 57, 30–74 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Institute of Energy and Power Plant TechnologyTU DarmstadtDarmstadtGermany
  2. 2.Institute of Reactive Flows and DiagnosticsTU DarmstadtDarmstadtGermany

Personalised recommendations