Flow, Turbulence and Combustion

, Volume 100, Issue 1, pp 177–196 | Cite as

Quenching of Premixed Flames at Cold Walls: Effects on the Local Flow Field

  • Christopher JainskiEmail author
  • Martin Rißmann
  • Suad Jakirlic
  • Benjamin Böhm
  • Andreas Dreizler


The presence of a turbulent premixed flame strongly influences the properties of the adjacent velocity boundary layer. This influence is studied here using a generic configuration where at atmospheric pressure turbulent premixed methane/air flames interact with a temperature stabilized wall. The experiment is optimized for well-defined boundary conditions and optical accessibility in the zone where the flame impinges at the wall. Laser based diagnostic methods are used to measure two components of the velocity field by particle image velocimetry simultaneously with the flame front position using laser induced fluorescence of the OH molecule. Two measurement planes are selected that are aligned perpendicularly to the surface of the wall. Based on this data, the flow field near the wall is analyzed by different methodologies using laboratory-fixed and flame-conditioned statistics, a quadrant splitting analysis of the Reynolds stresses and an evaluation of the production term of the turbulent kinetic energy. The results of chemically reactive cases are compared to their corresponding non-reactive flows for otherwise identical inflow conditions. In the zone of flame-wall interactions the boundary layer structure and its turbulence are dominated by the turbulent flame. Important features are that the flame compresses the boundary layer already upstream the location where the flame is finally quenched and that ejection and sweeps are no longer the dominant mechanisms as in non-reactive boundary layers. This experimental data may serve additionally as a database for model development for near wall reactive flows.


Flame quenching Boundary layer Sidewall quenching Laser diagnostics Turbulence 



We acknowledge the financial support of Deutsche Forschungsgemeinschaft through SFB/Transregio 150. Andreas Dreizler is very grateful for additional support through the Leibniz program.

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


This study was funded by Deutsche Forschungsgemeinschaft (DFG) through SFB/Transregio 150. Andreas Dreizler is additionally supported through the DFG Leibniz program.


  1. 1.
    Alkidas, A.C.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Prog. Energ. Combust. 25, 253–273 (1999)CrossRefGoogle Scholar
  2. 2.
    Epstein, A.H.: Aircraft engines’ needs from combustion science and engineering. Combust. Flame 159, 1791–1792 (2012)CrossRefGoogle Scholar
  3. 3.
    Dreizler, A., Böhm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRefGoogle Scholar
  4. 4.
    Poinsot, T., Haworth, D., Bruneaux, G.: Direct simulation and modeling of flame-wall interaction for premixed turbulent combustion. Combust. Flame 95, 118–132 (1993)CrossRefGoogle Scholar
  5. 5.
    Bruneaux, G., Akselvoll, K., Poinsot, T., Ferziger, J.H.: Flame-wall interaction simulation in a turbulent channel flow. Combust. Flame 107, 27–36 (1996)CrossRefGoogle Scholar
  6. 6.
    Lai, J., Chakraborty, N.: Effects of lewis number on head on quenching of turbulent premixed flames: a direct numerical simulation analysis. Flow Turbul. Combust. 96, 279–308 (2016)CrossRefGoogle Scholar
  7. 7.
    Rißmann, M., Jainski, C., Mann, M., Dreizler, A.: Flame-flow interaction in premixed turbulent flames during transient head-on quenching. Flow Turbul. Combust. 98, 1025–1038 (2017)CrossRefGoogle Scholar
  8. 8.
    Richard, G., Escudié, D.: Turbulence effect on the flame-wall interaction. 1st Symp. (Int.) on Turb. and Shear Flow, 519–523. (1999)
  9. 9.
    Mann, M., Jainski, C., Dreizler, A.: Spectroscopic Temperature and CO Concentration Measurements of Unsteady Wall Head-On Quenching Processes. In: European Combustion Meeting (2013)Google Scholar
  10. 10.
    Bohlin, A., Jainski, C., Patterson, B.D., Dreizler, A., Kliewer, C.J.: Multiparameter spatio-thermochemical probing of flame–wall interactions advanced with coherent Raman imaging. Proc. Combust. Inst. 36, 4557–4564 (2017)CrossRefGoogle Scholar
  11. 11.
    Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017)CrossRefGoogle Scholar
  12. 12.
    Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction. Proc. Combust. Inst. 36, 1827–1834 (2017)CrossRefGoogle Scholar
  13. 13.
    Bruneaux, G., Poinsot, T., Ferziger, J.H.: Premixed flame–wall interaction in a turbulent channel flow: budget for the flame surface density evolution equation and modelling. J. Fluid Mech. 349, 191–219 (1997)CrossRefzbMATHGoogle Scholar
  14. 14.
    Angelberger, C., Poinsot, T., Delhay, B.: Improving Near-Wall combustion and wall heat transfer modeling in SI engine computations. SAE Technical Paper 972881 (1997)Google Scholar
  15. 15.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. Self-Publishing, Bordeaux (2012)Google Scholar
  16. 16.
    Alshaalan, T., Rutland, C.J.: Wall heat flux in turbulent premixed reacting flow. Combust. Sci. Technol. 174, 135–165 (2002)CrossRefGoogle Scholar
  17. 17.
    Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)CrossRefzbMATHGoogle Scholar
  18. 18.
    Cheng, R.K., Bill, R.G., Robben, F.: Experimental study of combustion in a turbulent boundary layer. Symp. (Int.) Combust. 18, 1021–1029 (1981)CrossRefGoogle Scholar
  19. 19.
    Ng, T.T., Cheng, R.K., Robben, F., Talbot, L.: Combustion-turbulence interaction in the turbulent boundary layer over a hot surface. Symp. (Int.) Combust. 19, 359–366 (1982)CrossRefGoogle Scholar
  20. 20.
    Gruber, A., Chen, J.H., Valiev, D., Law, C.K.: Direct numerical simulation of premixed flame boundary layer flashback in turbulent channel flow. J. Fluid Mech. 709, 516–542 (2012)CrossRefzbMATHGoogle Scholar
  21. 21.
    Heeger, C., Gordon, R.L., Tummers, M.J., Sattelmayer, T., Dreizler, A.: Experimental analysis of flashback in lean premixed swirling flames: upstream flame propagation. Exp. Fluids 49, 853–863 (2010)CrossRefGoogle Scholar
  22. 22.
    Peters, N.: Laminar flamelet concepts in turbulent combustion. Proc. Combust. Inst. 21, 1231–1250 (1988)CrossRefGoogle Scholar
  23. 23.
    Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)CrossRefGoogle Scholar
  24. 24.
    Clark, G., Farrow, R.L.: The CARSFT Code. User and Programmer Information. Livermore, CA (1990)Google Scholar
  25. 25.
    Nagano, Y., Tagawa, M., Tsuji, T.: Effects of adverse pressure gradients on mean flows and turbulence statistics in a boundary layer. In: Durst, F., Friedrich, R., Launder, B.E., Schmidt, F.W., Schumann, U., Whitelaw, J. (eds.) Turbulent Shear Flows 8: Selected Papers from the Eighth International Symposium on Turbulent Shear Flows, Munich, Germany, September 9–11, 1991, pp. 7–21. Springer, Berlin (1993)CrossRefGoogle Scholar
  26. 26.
    Hanjalić, K., Hadžić, I., Jakirlić, S.: Modeling turbulent wall flows subjected to strong pressure variations. J. Fluids Eng. 121, 57 (1999)CrossRefGoogle Scholar
  27. 27.
    Spalart, P.R.: Direct simulation of a turbulent boundary layer up to R = 1410. J. Fluid Mech. 187, 61–98 (1988)CrossRefzbMATHGoogle Scholar
  28. 28.
    Wallace, J.M., Eckelmann, H., Brodkey, R.S.: The wall region in turbulent shear flow. J. Fluid Mech. 54, 39–48 (1972)CrossRefGoogle Scholar
  29. 29.
    Willmarth, W.W., Lu, S.S.: Structure of the Reynolds stress near the wall. J. Fluid Mech. 55, 65–92 (1972)CrossRefGoogle Scholar
  30. 30.
    Wallace, J.M.: Quadrant analysis in turbulence research. History and evolution. Annu. Rev. Fluid Mech. 48, 131–158 (2016)CrossRefzbMATHGoogle Scholar
  31. 31.
    Corino, E.R., Brodkey, R.S.: A visual investigation of the wall region in turbulent flow. J. Fluid Mech. 37, 1–30 (1969)CrossRefGoogle Scholar
  32. 32.
    Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)CrossRefzbMATHGoogle Scholar
  33. 33.
    Chakraborty, N., Katragadda, M., Cant, R.S.: Statistics and modelling of turbulent kinetic energy transport in different regimes of premixed combustion. Flow Turbul. Combust. 87, 205–235 (2011)CrossRefzbMATHGoogle Scholar
  34. 34.
    Cheng, R.K.: Conditional sampling of turbulence intensities and reynolds stress in premixed turbulent flames. Combust. Sci. Technol. 41, 109–142 (1984)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  • Christopher Jainski
    • 1
    Email author
  • Martin Rißmann
    • 1
  • Suad Jakirlic
    • 2
  • Benjamin Böhm
    • 3
  • Andreas Dreizler
    • 1
  1. 1.Institute of Reactive Flows and Diagnostics (RSM)Technische Universität DarmstadtDarmstadtGermany
  2. 2.Institute of Fluid Mechanics and Aerodynamics (SLA)Technische Universität DarmstadtDarmstadtGermany
  3. 3.Institute of Energy and Power Plant Technology (EKT)Technische Universität DarmstadtDarmstadtGermany

Personalised recommendations