Flow, Turbulence and Combustion

, Volume 99, Issue 2, pp 531–550 | Cite as

Large-eddy Simulation of Pilot-assisted Pulverized-coal Combustion in a Weakly Turbulent Jet

  • Kaidi Wan
  • Jun Xia
  • Zhihua Wang
  • Mohamed Pourkashanian
  • Kefa Cen


Large-eddy simulation has been performed to investigate pilot-assisted pulverized-coal combustion in a weakly turbulent air jet. An advanced pyrolysis model, the chemical percolation devolatilization (CPD) model, has been incorporated into the LES framework to predict the local, instantaneous pyrolysis kinetics of coal particles during the simulation. Prediction on volatile species generation is thus improved, which provides an important initial condition for gas-phase volatile and solid-phase char combustion. For gas-phase combustion, the partially stirred reactor (PaSR) model is employed to model the combustion of volatile species, taking into account subgrid turbulence-chemistry interactions. For heterogeneous solid-phase char combustion, both the intrinsic chemical reaction on the internal surface of a char particle and the diffusion of gaseous oxidant through the film layer around the particle have been incorporated by using a kinetic/diffusion surface reaction model. The LES results show overall good agreements with experimental data. Sensitivity analysis has been performed to better understand the impact of parameter uncertainties on the LES results.


Large-eddy simulation Chemical percolation devolatilization Pulverized-coal combustion Partially stirred reactor 



This work was performed by the first author KDW when he was a Research Assistant at Brunel University London under the support of the Engineering and Physical Sciences Research Council (EPSRC) of the UK and the China Scholarship Council. The research was also supported by the National Natural Science Foundation of China (51422605, 51390491) and National Basic Research Program of China (2012CB214906). This work used the ARCHER UK National Supercomputing Service (http://www.archer.ac.uk).

Compliance with Ethical Standards

Conflict of interests

The authors declare that they have no conflict of interest.


  1. 1.
    Khatami, R., Levendis, Y.A.: An overview of coal rank influence on ignition and combustion phenomena at the particle level. Combust. Flame 164, 22–34 (2016). doi: 10.1016/j.combustflame.2015.10.031 CrossRefGoogle Scholar
  2. 2.
    Vascellari, M., Schulze, S., Nikrityuk, P., Safronov, D., Hasse, C.: Numerical simulation of pulverized coal MILD combustion using a new heterogeneous combustion submodel. Flow Turbul. Combust. 92(1), 319–345 (2014). doi: 10.1007/s10494-013-9467-7 CrossRefGoogle Scholar
  3. 3.
    Knappstein, R., Kuenne, G., Ketelheun, A., Köser, J., Becker, L., Heuer, S., Schiemann, M., Scherer, V., Dreizler, A., Sadiki, A., Janicka, J.: Devolatilization and volatiles reaction of individual coal particles in the context of FGM tabulated chemistry. Combust. Flame 169, 72–84 (2016). doi: 10.1016/j.combustflame.2016.04.014 CrossRefGoogle Scholar
  4. 4.
    Stein, O.T., Olenik, G., Kronenburg, A., Marincola, F.C., Franchetti, B.M., Kempf, A.M., Ghiani, M., Vascellari, M., Hasse, C.: Towards comprehensive coal combustion modelling for LES. Flow Turbul. Combust. 90(4), 859–884 (2013)CrossRefGoogle Scholar
  5. 5.
    Li, M., Zhang, L.: Haze in China: Current and future challenges. Environ. Pollut. 189, 85–86 (2014). doi: 10.1016/j.envpol.2014.02.024 CrossRefGoogle Scholar
  6. 6.
    Hees, J., Zabrodiec, D., Massmeyer, A., Habermehl, M., Kneer, R.: Experimental investigation and comparison of pulverized coal combustion in CO2/O2- and N2/O2-atmospheres. Flow Turbul. Combust. 96 (2), 417–431 (2016). doi: 10.1007/s10494-015-9662-9 CrossRefGoogle Scholar
  7. 7.
    Mei, Z., Li, P., Mi, J., Wang, F., Zhang, J.: Diffusion MILD combustion of firing pulverized-coal at a pilot furnace. Flow Turbul. Combust. 95(4), 803–829 (2015). doi: 10.1007/s10494-015-9642-0 CrossRefGoogle Scholar
  8. 8.
    Kurose, R., Makino, H.: Large eddy simulation of a solid-fuel jet flame. Combust. Flame 135(1–2), 1–16 (2003). doi: 10.1016/S0010-2180(03)00141-X CrossRefGoogle Scholar
  9. 9.
    Kurose, R., Watanabe, H., Makino, H.: Numerical simulations of pulverized coal combustion. KONA Powder Part. J. 27, 144–156 (2009)CrossRefGoogle Scholar
  10. 10.
    Edge, P., Gubba, S.R., Ma, L., Porter, R., Pourkashanian, M., Williams, A.: LES Modelling of air and oxy-fuel pulverised coal combustion—impact on flame properties. Proc. Combust. Inst. 33(2), 2709–2716 (2011)CrossRefGoogle Scholar
  11. 11.
    Gharebaghi, M., Irons, R.M.A., Ma, L., Pourkashanian, M., Pranzitelli, A.: Large eddy simulation of oxy-coal combustion in an industrial combustion test facility. Int. J. Greenhouse Gas Control 5, S100–S110 (2011)Google Scholar
  12. 12.
    Chen, L., Ghoniem, A.F.: Simulation of oxy-coal combustion in a 100 kWth test facility using RANS and LES: a validation study. Energy Fuel 26(6), 4783–4798 (2012)CrossRefGoogle Scholar
  13. 13.
    Yamamoto, K., Murota, T., Okazaki, T., Taniguchi, M.: Large eddy simulation of a pulverized coal jet flame ignited by a preheated gas flow. Proc. Combust. Inst. 33(2), 1771–1778 (2011)CrossRefGoogle Scholar
  14. 14.
    Pedel, J., Thornock, J.N., Smith, P.J.: Large eddy simulation of pulverized coal jet flame ignition using the direct quadrature method of moments. Energy Fuel 26 (11), 6686–6694 (2012)Google Scholar
  15. 15.
    Taniguchi, M., Okazaki, H., Kobayashi, H., Azuhata, S., Miyadera, H., Muto, H., Tsumura, T.: Pyrolysis and ignition characteristics of pulverized coal particles. J. Energy Resour. Technol. 123(1), 32–38 (2001)CrossRefGoogle Scholar
  16. 16.
    Hwang, S.M., Kurose, R., Akamatsu, F., Tsuji, H., Makino, H., Katsuki, M.: Application of optical diagnostics techniques to a laboratory-scale turbulent pulverized coal flame. Energy Fuel 19(2), 382–392 (2005)CrossRefGoogle Scholar
  17. 17.
    Franchetti, B.M., Cavallo Marincola, F., Navarro-Martinez, S., Kempf, A.M.: Large eddy simulation of a pulverised coal jet flame. Proc. Combust. Inst. 34 (2), 2419–2426 (2013)CrossRefGoogle Scholar
  18. 18.
    Rabaçal, M., Franchetti, B.M., Marincola, F.C., Proch, F., Costa, M., Hasse, C., Kempf, A.M.: Large Eddy Simulation of coal combustion in a large-scale laboratory furnace. Proc. Combust. Inst. 35(3), 3609–3617 (2015). doi: 10.1016/j.proci.2014.06.023 CrossRefGoogle Scholar
  19. 19.
    Hara, T., Muto, M., Kitano, T., Kurose, R., Komori, S.: Direct numerical simulation of a pulverized coal jet flame employing a global volatile matter reaction scheme based on detailed reaction mechanism. Combust. Flame 162(12), 4391–4407 (2015). doi: 10.1016/j.combustflame.2015.07.027 CrossRefGoogle Scholar
  20. 20.
    Watanabe, J., Yamamoto, K.: Flamelet model for pulverized coal combustion. Proc. Combust. Inst. 35(2), 2315–2322 (2015). doi: 10.1016/j.proci.2014.07.065 CrossRefGoogle Scholar
  21. 21.
    Zhao, X.Y., Haworth, D.C.: Transported PDF modeling of pulverized coal jet flames. Combust. Flame 161(5), 1866–1882 (2014)CrossRefGoogle Scholar
  22. 22.
    Hashimoto, N., Kurose, R., Shirai, H.: Numerical simulation of pulverized coal jet flame employing the TDP model. Fuel 97, 277–287 (2012). doi: 10.1016/j.fuel.2012.03.005 CrossRefGoogle Scholar
  23. 23.
    Badzioch, S., Hawksley, P.G.W.: Kinetics of thermal decomposition of pulverized coal particles. Ind. Eng. Chem. Proc. Des. Dev. 9(4), 521–530 (1970)CrossRefGoogle Scholar
  24. 24.
    Vascellari, M., Arora, R., Pollack, M., Hasse, C.: Simulation of entrained flow gasification with advanced coal conversion submodels. Part 1: Pyrolysis. Fuel 113, 654–669 (2013)CrossRefGoogle Scholar
  25. 25.
    Vascellari, M., Xu, H., Hasse, C.: Flamelet modeling of coal particle ignition. Proc. Combust. Inst. 34(2), 2445–2452 (2013)CrossRefGoogle Scholar
  26. 26.
    Grant, D.M., Pugmire, R.J., Fletcher, T.H., Kerstein, A.R.: Chemical-model of coal devolatilization using percolation lattice statistics. Energy Fuel 3(2), 175–186 (1989). doi: 10.1021/Ef00014a011 CrossRefGoogle Scholar
  27. 27.
    Wan, K.D., Xia, J., Wang, Z.H., Wrobel, L.C., Cen, K.F.: Online-CPD-coupled large-eddy simulation of pulverized-coal pyrolysis in a hot turbulent nitrogen jet. Combust. Sci. Technol. 189(1), 103–131 (2017). doi: 10.1080/00102202.2016.1193498 CrossRefGoogle Scholar
  28. 28.
    Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Symp. (Int.) Combust. 16(1), 719–729 (1977). doi: 10.1016/S0082-0784(77)80366-4 CrossRefGoogle Scholar
  29. 29.
    Baum, M.M., Street, P.J.: Predicting the combustion behaviour of coal particles. Combust. Sci. Technol. 3(5), 231–243 (1971)CrossRefGoogle Scholar
  30. 30.
    Berglund, M., Fedina, E., Fureby, C., Tegnér, J., Sabel’nikov, V.: Finite rate chemistry large-eddy simulation of self-ignition in supersonic combustion ramjet. AIAA J. 48(3), 540–550 (2010). doi: 10.2514/1.43746 CrossRefGoogle Scholar
  31. 31.
    Bermúdez, A., Ferrín, J.L., Liñán, A., Saavedra, L.: Numerical simulation of group combustion of pulverized coal. Combust. Flame 158(7), 1852–1865 (2011). doi: 10.1016/j.combustflame.2011.02.002 CrossRefGoogle Scholar
  32. 32.
    Xia, J., Luo, K.H., Kumar, S.: Large-eddy simulation of interactions between a reacting jet and evaporating droplets. Flow Turbul. Combust. 80(1), 133–153 (2008). doi: 10.1007/s10494-007-9084-4 CrossRefMATHGoogle Scholar
  33. 33.
    Xia, J., Luo, K.H., Zhao, H.: Dynamic large-eddy simulation of droplet effects on a reacting plume in countercurrent configuration. Combust. Sci. Technol. 183(5), 487–518 (2011). doi: 10.1080/00102202.2010.534517 CrossRefGoogle Scholar
  34. 34.
    Xia, J., Zhao, H., Megaritis, A., Luo, K.H., Cairns, A., Ganippa, L.C.: Inert-droplet and combustion effects on turbulence in a diluted diffusion flame. Combust. Flame 160(2), 366–383 (2013). doi: 10.1016/j.combustflame.2012.10.007 CrossRefGoogle Scholar
  35. 35.
    Yi, F.X.: Direct numerical simulation of gas/coal particles gas-solid two-phase round jet combustion flow. Ph.D. Thesis, Zhejiang University. in Chinese (2012)Google Scholar
  36. 36.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid - scale eddy viscosity model. Phys. Fluids A 3(5), 1760–1765 (1991)CrossRefMATHGoogle Scholar
  37. 37.
    Sutherland, W.: LII. The viscosity of gases and molecular force. Philos. Mag. 36 (223), 507–531 (1893). doi: 10.1080/14786449308620508 CrossRefMATHGoogle Scholar
  38. 38.
    Jones, W.P., Lyra, S., Navarro-Martinez, S.: Large eddy simulation of a swirl stabilized spray flame. Proc. Combust. Inst. 33(2), 2153–2160 (2011). doi: 10.1016/j.proci.2010.07.032 CrossRefGoogle Scholar
  39. 39.
    Ranz, W.E., Marshall, W.R.: Evaporation from drops. Chem. Eng. Prog. 48 (3), 141–146 (1952)Google Scholar
  40. 40.
    Chandrasekhar, S.: Radiative transfer. Dover Publications, New York (1960)MATHGoogle Scholar
  41. 41.
    Wan, K.D., Wang, Z.H., He, Y., Xia, J., Zhou, Z.J., Zhou, J.H., Cen, K.F.: Experimental and modeling study of pyrolysis of coal, biomass and blended coal–biomass particles. Fuel 139, 356–364 (2015)CrossRefGoogle Scholar
  42. 42.
    Smith, T.F., Shen, Z.F., Friedman, J.N.: Evaluation of coefficients for the weighted sum of gray gases model. J. Heat Transf. 104(4), 602–608 (1982). doi: 10.1115/1.3245174 CrossRefGoogle Scholar
  43. 43.
    Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Grant, D.M.: Chemical percolation model for devolatilization. 2. Temperature and heating rate effects on product yields. Energy Fuel 4(1), 54–60 (1990)CrossRefGoogle Scholar
  44. 44.
    Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., Grant, D.M.: Chemical percolation model for devolatilization .3. Direct Use of C-13 Nmr Data to Predict Effects of Coal Type. Energy Fuel 6(4), 414–431 (1992). doi: 10.1021/Ef00034a011 CrossRefGoogle Scholar
  45. 45.
    Genetti, D., Fletcher, T.H., Pugmire, R.J.: Development and application of a correlation of 13C NMR chemical structural analyses of coal based on elemental composition and volatile matter content. Energy Fuel 13(1), 60–68 (1999)CrossRefGoogle Scholar
  46. 46.
    Genetti, D.B.: An advanced model of coal devolatilization based on chemical structure. M.S Thesis, Brigham Young University (1999)Google Scholar
  47. 47.
    Wang, Z.H., Wan, K.D., Xia, J., He, Y., Liu, Y.Z., Liu, J.Z.: Pyrolysis characteristics of coal, biomass, and coal–biomass blends under high heating rate conditions: effects of particle diameter, fuel type, and mixing conditions. Energy Fuel 29(6), 5036–5046 (2015). doi: 10.1021/acs.energyfuels.5b00646 CrossRefGoogle Scholar
  48. 48.
    Westbrook, C.K., Dryer, F.L.: Simplified reaction mechanisms for the oxidation of hydrocarbon fuels in flames. Combust. Sci. Technol. 27(1–2), 31–43 (1981). doi: 10.1080/00102208108946970 CrossRefGoogle Scholar
  49. 49.
    Milewski, J., Świrski, K., Santarelli, M., Leone, P.: Advanced methods of solid oxide fuel cell modeling. Springer-Verlag, London (2011)CrossRefGoogle Scholar
  50. 50.
    Duwig, C., Nogenmyr, K.-J., Chan, C.-k., Dunn, M.J.: Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combust. Theory Model. 15(4), 537–568 (2011). doi: 10.1080/13647830.2010.548531 CrossRefMATHGoogle Scholar
  51. 51.
    El-Asrag, H., Menon, S.: Large eddy simulation of bluff-body stabilized swirling non-premixed flames. Proc. Combust. Inst. 31(2), 1747–1754 (2007). doi: 10.1016/j.proci.2006.07.251 CrossRefGoogle Scholar
  52. 52.
    Sabelnikov, V., Fureby, C.: LES combustion modeling for high Re flames using a multi-phase analogy. Combust. Flame 160(1), 83–96 (2013). doi: 10.1016/j.combustflame.2012.09.008 CrossRefGoogle Scholar
  53. 53.
    Moule, Y., Sabelnikov, V., Mura, A.: Highly resolved numerical simulation of combustion in supersonic hydrogen–air coflowing jets. Combust Flame 161(8), 2647–2668 (2014). doi: 10.1016/j.combustflame.2014.04.011 CrossRefGoogle Scholar
  54. 54.
    Liu, X.D., Osher, S., Chan, T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115(1), 200–212 (1994)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Kaidi Wan
    • 1
    • 2
  • Jun Xia
    • 2
  • Zhihua Wang
    • 1
  • Mohamed Pourkashanian
    • 3
  • Kefa Cen
    • 1
  1. 1.State Key Laboratory of Clean Energy UtilizationZhejiang UniversityHangzhouChina
  2. 2.Department of Mechanical, Aerospace and Civil Engineering & Institute of Energy FuturesBrunel University LondonUxbridgeUK
  3. 3.Department of Mechanical EngineeringUniversity of SheffieldSheffieldUK

Personalised recommendations