Flow, Turbulence and Combustion

, Volume 99, Issue 1, pp 93–118 | Cite as

A Mesh Adaptation Strategy to Predict Pressure Losses in LES of Swirled Flows

  • Guillaume Daviller
  • Maxence Brebion
  • Pradip Xavier
  • Gabriel Staffelbach
  • Jens-Dominik Müller
  • Thierry Poinsot


Large-Eddy Simulation (LES) has become a potent tool to investigate instabilities in swirl flows even for complex, industrial geometries. However, the accurate prediction of pressure losses on these complex flows remains difficult. The paper identifies localised near-wall resolution issues as an important factor to improve accuracy and proposes a solution with an adaptive mesh h-refinement strategy relying on the tetrahedral fully automatic MMG3D library of Dapogny et al. (J. Comput. Phys. 262, 358-378, 2014) using a novel sensor based on the dissipation of kinetic energy. Using a joint experimental and numerical LES study, the methodology is first validated on a simple diaphragm flow before to be applied on a swirler with two counter-rotating passages. The results demonstrate that the new sensor and adaptation approach can effectively produce the desired local mesh refinement to match the target losses, measured experimentally. Results shows that the accuracy of pressure losses prediction is mainly controlled by the mesh quality and density in the swirler passages. The refinement also improves the computed velocity and turbulence profiles at the swirler outlet, compared to PIV results. The significant improvement of results confirms that the sensor is able to identify the relevant physics of turbulent flows that is essential for the overall accuracy of LES. Finally, in the appendix, an additional comparison of the sensor fields on tetrahedral and hexahedral meshes demonstrates that the methodology is broadly applicable to all mesh types.


LES Swirl injector Pressure losses Adaptive mesh refinement 



The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Program (FP/2007-2013) / ERC Grant Agreement ERC-AdG 319067-INTECOCIS. This work was granted access to the HPC resources of CINES under the allocation 2016-[x20162b7036] made by GENCI. The authors acknowledge the support of C. Dobrzynski and A. Froehly from INRIA Bordeaux for the support on the MMG3D library. The support of SAFRAN HELICOPTER ENGINES (C. Berat, N. Savary) is also gratefully acknowledged.


  1. 1.
    Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. 32(2), 93–161 (2006)CrossRefGoogle Scholar
  2. 2.
    Huang, Y., Sung, H.G., Hsieh, S.Y., Yang, V.: Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor. J. Prop. Power 19 (5), 782–794 (2003)CrossRefGoogle Scholar
  3. 3.
    Moureau, V., Domingo, P., Vervisch, L.: From large-eddy simulation to direct numerical simulation of a lean premixed swirl flame: Filtered laminar flame-pdf modeling. Combust. Flame 158(7), 1340–1357 (2011)CrossRefGoogle Scholar
  4. 4.
    Roux, S., Lartigue, G., Poinsot, T., Meier, U., Bérat, C.: Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis and large eddy simulations. Combust. Flame 141, 40–54 (2005)CrossRefGoogle Scholar
  5. 5.
    Apte, S.V., Mahesh, K., Moin, P., Oefelein, J.C.: Large-eddy simulation of swirling particle-laden flows in a coaxial-jet combustor. Int. J. Multiphase Flow 29 (8), 1311–1331 (2003)CrossRefMATHGoogle Scholar
  6. 6.
    Falese, M., Gicquel, L.Y., Poinsot, T.: LES of bifurcation and hysteresis in confined annular swirling flows. Comput. Fluids 89, 167–178 (2014)CrossRefGoogle Scholar
  7. 7.
    Sankaran, V., Menon, S.: LES of spray combustion in swirling flows. J. Turb. 3, 011 (2002)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Huang, Y., Yang, V.: Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog. Energy Comb. Sci. 35(4), 293–364 (2009)CrossRefGoogle Scholar
  9. 9.
    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulations of gaseous flames in gas turbine combustion chambers. Prog. Energy Comb. Sci. 38(6), 782–817 (2012)CrossRefGoogle Scholar
  10. 10.
    Barré, D., Kraushaar, M., Staffelbach, G., Moureau, V., Gicquel, L.Y.M.: Compressible and low Mach number LES of a swirl experimental burner. CR – Mec 341, 277–287 (2013)CrossRefGoogle Scholar
  11. 11.
    Falese, M.: A Study of the Effects of Bifurcations in Swirling Flows Using Large Eddy Simulation and Mesh Adaptation. Ph.D. thesis, Université de Toulouse (2013)Google Scholar
  12. 12.
    Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(011), 702–5 (2012)Google Scholar
  13. 13.
    Boudier, G., Gicquel, L.Y.M., Poinsot, T., Bissières, D., Bérat, C.: Effect of mesh resolution on Large Eddy Simulation of reacting flows in complex geometry combustors. Combust. Flame 155(1-2), 196–214 (2008)CrossRefGoogle Scholar
  14. 14.
    Hertel, C., Fröhlich, J.: Error Reduction in LES via Adaptive Moving Grids. In: Qual. Reliab. Large-Eddy Simulations I, vol. 16, pp. 309–318 (2011)Google Scholar
  15. 15.
    Frey, P.J., Alauzet, F.: Anisotropic mesh adaptation for CFD computations. Comput. Methods Appl. Mech. Eng. 194(48), 5068–5082 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Loseille, A., Dervieux, A., Alauzet, F.: Fully anisotropic goal-oriented mesh adaptation for 3D steady Euler equations. J. Comput. Phys. 229(8), 2866–2897 (2010)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Rai, M.M., Anderson, D.: The Use of Adaptive Grids in Conjunction with Shock-Capturing Methods. In: 11th AIAA Fluid Dynamics Conference, AIAA 81–1012 (1981)Google Scholar
  18. 18.
    Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53(3), 484–512 (1984)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Dapogny, C., Dobrzynski, C., Frey, P.: Three-dimensional adaptive domain remeshing, implicit domain meshing, and applications to free and moving boundary problems. J. Comput. Phys. 262, 358–378 (2014)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Mitran, S.M.: A Comparison of Adaptive Mesh Refinment Approaches for Large-Eddy Simulation. In: 3rd AFOSR International Conference on DNS/LES (2001)Google Scholar
  21. 21.
    Lohner, R., Baum, J.D.: Adaptive h-refinement on 3D unstructured grids for transient problems. Int. J. Numer. Meth. Fluids 14(12), 1407–1419 (1992)CrossRefMATHGoogle Scholar
  22. 22.
    Majewski, J., Rokicki, J.: Anisotropic Mesh Adaptation in the Presence of Complex Boundaries. In: ADIGMA - a Eur. Initiat. Dev. Adapt. Higher-Order Var. Methods Aerosp. Appl., pp. 441–453 (2010)Google Scholar
  23. 23.
    Majewski, J., SzaTys, P., Rokicki, J.: Anisotropic Adaptation for Simulation of High-Reynolds Number Flows Past Complex 3D Geometries. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds.) IDIHOM Ind. High-Order Methods - A Top-Down Approach, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, pp. 101–124 (2015)Google Scholar
  24. 24.
    Lombardini, M., Deiterding, R.: Three-Dimensional Parallel Adaptive Mesh Refinement Simulations of Shock-Driven Turbulent Mixing in Plane and Converging Geometries. In: 21st International Conference on Parallel Computational Fluid Dynamics (2009)Google Scholar
  25. 25.
    Zhang, B., Wang, T., Gu, C.G., Dai, Z.Y.: An adaptive control strategy for proper mesh distribution in large eddy simulation. J. Hydrodyn. Ser. B 22(6), 865–870 (2010)CrossRefGoogle Scholar
  26. 26.
    Benard, P., Balarac, G., Moureau, V., Dobrzynski, C., Lartigue, G., D’Angelo, Y.: Mesh adaptation for Large-Eddy Simulations in complex geometries. Int. J. Numer. Meth. Fluids 81(12), 719–740 (2015)Google Scholar
  27. 27.
    Bejan, A.: Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes. J. Applied Phy 79(3), 1191–1218 (1996)CrossRefGoogle Scholar
  28. 28.
    Kock, F., Herwig, H.: Entropy production calculation for turbulent shear flows and their implementation in CFD codes. Int. J. Heat Fluid Flow 26(4), 672–680 (2005)CrossRefGoogle Scholar
  29. 29.
    McEligot, D.M., Walsh, E.J., Laurien, E., Spalart, P.R.: Entropy generation in the viscous parts of turbulent boundary layers. J. of Fluids Eng. 130(6), 1–12 (2008)CrossRefGoogle Scholar
  30. 30.
    Prigogine, I.: Time, structure, and fluctuations. Science 201(4358), 777–785 (1978)CrossRefGoogle Scholar
  31. 31.
    Horne, W.C., Karamcheti, K.: Extrema principles of entropy production and energy dissipation in fluid mechanics. Tech. Rep NASA-TM-100992 (1988)Google Scholar
  32. 32.
    Denton, J.D.: Loss mechanisms in turbomachines. J. Turbomach 115, 621–656 (1993)CrossRefGoogle Scholar
  33. 33.
    Lax, P.: Hyperbolic systems of conservation laws II. Comm. Pure Appl. Math 10(4), 537–566 (1957)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Osher, S., Chakravarthy, S.: High resolution schemes and the entropy condition. SIAM J. Num. Anal 21(5), 955–984 (1984)MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    Zeman, O.: Dilatation dissipation: the concept and application in modeling compressible mixing layers. Phys. Fluids 2, 178–188 (1990)CrossRefGoogle Scholar
  36. 36.
    Sagaut, P.: Large eddy simulation for incompressible flows Springer-Science (1998)Google Scholar
  37. 37.
    Piomelli, U.: Large-eddy simulation: achievements and challenges. Prog. Aero. Sci. 35(4), 335–362 (1999)CrossRefGoogle Scholar
  38. 38.
    Biswas, R., Strawn, R.C.: Tetrahedral and hexahedral mesh adaptation for CFD problems. App. Num. Math 26, 135–151 (1998)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    Schønfeld, T., Rudgyard, M.: Steady and unsteady flow simulations using the hybrid flow solver avbp. AIAA J 37(11), 1378–1385 (1999)CrossRefGoogle Scholar
  40. 40.
    Selle, L., Lartigue, G., Poinsot, T., Koch, R., Schildmacher, K.U., Krebs, W., Prade, B., Kaufmann, P., Veynante, D.: Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust. Flame 137(4), 489–505 (2004)CrossRefGoogle Scholar
  41. 41.
    Colin, O., Rudgyard, M.: Development of high-order Taylor-Galerkin schemes for unsteady calculation. J. Comput. Phys. 162(2), 338–371 (2000)MathSciNetCrossRefMATHGoogle Scholar
  42. 42.
    Poinsot, T., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101(1), 104–129 (1992)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    Thompson, K.W.: Time dependent boundary conditions for hyperbolic systems. J. Comput. Phys. 68(1), 1–24 (1987)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Rudy, D., Strikwerda, J.: A non-reflecting outflow boundary condition for subsonic navier-stokes calculations. J. Comp. Phy. 36, 55–70 (1980)CrossRefMATHGoogle Scholar
  45. 45.
    Nicoud, F., Baya Toda, H., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23 (2011)Google Scholar
  46. 46.
    Baya Toda, H., Cabrit, O., Balarac, G., Bose, S., Lee, J., Choi, H., Nicoud, F.: A Subgrid-Scale Model Based on Singular Values for LES in Complex Geometries. In: Proceedings Summer Progr., pp. 193–202. Center for Turbulence Research (2010)Google Scholar
  47. 47.
    Baya Toda, H., Cabrit, O., Truffin, K., Gilles, B., Nicoud, F., Applications, E., Energy, T., Techniques, A.: A Dynamic Procedure for Advanced Subgrid-Scale Models and Wall-Bounded Flows. In: Seventh Int. Symp. Turbul. Shear Flow Phenom (2011)Google Scholar
  48. 48.
    Rieth, M., Proch, F., Stein, O.T., Pettit, M.W.A., Kempf, A.M.: Comparison of the Sigma and Smagorinsky LES models for grid generated turbulence and a channel flow. Comput. Fluids 99, 172–181 (2014)CrossRefGoogle Scholar
  49. 49.
    Idel’Cik, I.: Memento des pertes de charge Eyrolles (1969)Google Scholar
  50. 50.
    White, F.: Fluid Mechanics McGraw-Hill series in mechanical engineering (2011)Google Scholar
  51. 51.
    Hunt, J., Wray, A., Moin, P.: Eddies, Stream, and Convergence Zones in Turbulent Flows. In: Proceedings of the Summer Program, pp. 193–208. Center for Turbulence Research (1988)Google Scholar
  52. 52.
    Merkle, K.: Einfluss Gleich- Und GegensinNiger Drehrichtung Der Verbrennungsluftströme Auf Die Stabilisierung Turbulenter Doppeldrall-Diffusionsflammen. Ph.D. thesis, Universität Fridericiana Karlsruhe (2006)Google Scholar
  53. 53.
    Celik, I.B., Ghia, U., Roache, P.J., Freitas, C.J.: Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng. 130(7) (2008)Google Scholar
  54. 54.
    Lilley, D.G.: Swirl flows in combustion: a review. AIAA J 15(8), 1063–1078 (1977)CrossRefGoogle Scholar
  55. 55.
    Midgley, K., Spencer, A., McGuirk, J.J.: Unsteady flow structures in radial swirler fed fuel injectors. J. Eng. Gas Turbines Power 127(4), 755–764 (2005)CrossRefGoogle Scholar
  56. 56.
    Westerweel, J.: On velocity gradients in PIV interrogation. Exp. Fluids 44(5), 831–842 (2008)CrossRefGoogle Scholar
  57. 57.
    Palies, P., Durox, D., Schuller, T., Candel, S.: The combined dynamics of swirler and turbulent premixed swirling flames. Combust. Flame 157(9), 1698–1717 (2010)CrossRefGoogle Scholar
  58. 58.
    Gupta, A.K., Lilly, D.G., Syred, N.: Swirl flows abacus (1984)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.CERFACSToulouse Cedex 01France
  2. 2.IMFT, Allée du Professeur Camille SoulaToulouseFrance
  3. 3.School of Engineering and Materials ScienceQueen Mary University of LondonLondonUK

Personalised recommendations