Flow, Turbulence and Combustion

, Volume 99, Issue 1, pp 47–69 | Cite as

Parametric Study on a Sinusoidal Riblet for Drag Reduction by Direct Numerical Simulation

  • M. Sasamori
  • O. Iihama
  • H. Mamori
  • K. Iwamoto
  • A. Murata


The direct numerical simulation of fully developed turbulent channel flow with a sinusoidal riblet surface has been carried out at the friction Reynolds number of 110. Lateral spacing of adjacent walls in a sinusoidal riblet is varied sinusoidally in the streamwise direction. The average lateral spacing of a sinusoidal riblet is larger than the diameter of a quasi-streamwise vortex and its wetted area is smaller than that of ordinary straight-type riblets. We investigate the effect of sinusoidal riblet design parameters on the drag reduction rate and flow statistics in this paper. The parametric study shows that the maximum total drag reduction rate is approximately 9.8% at a friction Reynolds number of 110. The riblet induces downward and upward flows in the expanded and contracted regions, respectively, which contribute to periodic Reynolds shear stress. However, the random Reynolds shear stress decreases drastically as compared with the flat surface case, resulting in the reduction of total drag owing to the sinusoidal riblet. We also performed vortex tracking to discuss the motion of the vortical structure traveling over the sinusoidal riblet surface. Vortex tracking and probability analysis for the core of the vortical structure show that the vortical structure is attenuated owing to the sinusoidal riblet and follows the characteristic flow. These results show that the high skin-friction region on the channel wall is localized at the expanded region of the riblet walls. In consequence, the wetted area of the riblet decreases, resulting in the drag-reduction effect.


Riblet Fluid friction Drag reduction Turbulent flow Direct numerical simulation 



This research was partially supported by the Ministry of Education, Culture, Sports, Science and Technology through a Grant-in-Aid for Scientific Research (C) of 15K05785 in 2015. This work was also partially supported by Council for Science, Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program (SIP), “Innovative Combustion Technology” (Funding agency: JST). The authors acknowledge thier co-worker, Mr. Makoto Serizawa.


  1. 1.
    Walsh, M.J.: Turbulent boundary layer drag reduction using riblets. Amer. Inst. Aeronaut. Astronaut. (AIAA-paper 82–0169), p. 8 (1982)Google Scholar
  2. 2.
    Bechert, D., Bruse, M., Hage, W., Van der Hoeven, J.T., Hoppe, G.: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry. J. Fluid Mech. 338, 59–87 (1997)Google Scholar
  3. 3.
    Choi, K.S.: Near-wall structure of a turbulent boundary layer with riblets. J. Fluid Mech. 208, 417–458 (1989)CrossRefGoogle Scholar
  4. 4.
    El-Samni, O., Chun, H., Yoon, H.: Drag reduction of turbulent flow over thin rectangular riblets. Int. J. Eng. Sci. 45(2), 436–454 (2007)CrossRefGoogle Scholar
  5. 5.
    Walsh, M.J.: Riblets as a viscous drag reduction technique. Amer. Inst. Aeronaut. Astronaut. 21, 485–486 (1983)CrossRefGoogle Scholar
  6. 6.
    Bechert, D., Bartenwerfer, M.: The viscous flow on surfaces with longitudinal ribs. J. Fluid Mech. 206, 105–129 (1989)CrossRefGoogle Scholar
  7. 7.
    Luchini, P., Manzo, F., Pozzi, A.: Resistance of a grooved surface to parallel flow and cross-flow. J. Fluid Mech. 228, 87–109 (1991)MATHGoogle Scholar
  8. 8.
    Mayoral, G.R., Jiménez, J.: Hydrodynamic stability and breakdown of the viscous regime over riblets. J. Fluid Mech. 678, 317–347 (2011)CrossRefMATHGoogle Scholar
  9. 9.
    Lee, S.J., Lee, S.H.: Flow field analysis of a turbulent boundary layer over a riblet surface. Exp. Fluids 30(2), 153–166 (2001)CrossRefGoogle Scholar
  10. 10.
    Suzuki, Y., Yoshino, T., Yamagami, T., Kasagi, N.: Drag reduction in a turbulent channel flow by using a ga-based feedback control system. In: Proc. 6th Symp. Smart Control of Turbulence, pp. 31–40 (2005)Google Scholar
  11. 11.
    Choi, H., Moin, P., Kim, J.: Direct numerical simulation of turbulent flow over riblets. J. Fluid Mech. 225, 503–539 (1993)CrossRefMATHGoogle Scholar
  12. 12.
    Chu, D., Karniadakis, G.: A direct numerical simulation of laminar and turbulent flow over riblet-mounted surfaces. J. Fluid Mech. 250, 1–42 (1993)CrossRefGoogle Scholar
  13. 13.
    Goldstein, D., Handler, R., Sirovich, L.: Direct numerical simulation of turbulent flow over a modeled riblet covered surface. J. Fluid Mech. 302, 333–376 (1995)CrossRefMATHGoogle Scholar
  14. 14.
    Viswanath, P.: Aircraft viscous drag reduction using riblets. Progress Aerosp. Sci. 38(6), 571–600 (2002)CrossRefGoogle Scholar
  15. 15.
    Bechert, D., Bruse, M., Hage, W.: Experiments with three-dimensional riblets as an idealized model of shark skin. Exp. Fluids 28(5), 403–412 (2000)CrossRefGoogle Scholar
  16. 16.
    Peet, Y., Sagaut, P.: Theoretical prediction of turbulent skin friction on geometrically complex surfaces. Phys. Fluids 21(105105), 19 (2009)MATHGoogle Scholar
  17. 17.
    Peet, Y., Sagaut, P., Charron, Y.: Turbulent drag reduction using sinusoidal riblets with triangular cross-section. In: The 38th AIAA Fluid Dynamics Conference and Exhibit (AIAA-2008-3745), p. 9 (2008)Google Scholar
  18. 18.
    Chen, H., Rao, F., Shang, X., Zhang, D., Hagiwara, I.: Biomimetic drag reduction study on herringbone riblets of bird feather. J. Bionic Eng. 10, 341–349 (2013)CrossRefGoogle Scholar
  19. 19.
    Berger, T.W., Kim, J., Lee, C., Lim, J.: Turbulent boundary layer control utilizing the lorentz force. Phys. Fluids 12, 631–649 (2000)CrossRefMATHGoogle Scholar
  20. 20.
    Choi, K.S., Graham, M.: Drag reduction of turbulent pipe flows by circular-wall oscillation. Phys. Fluids 10(1), 7–9 (1998)CrossRefGoogle Scholar
  21. 21.
    Jung, W.J., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A 4, 1605–1607 (1992)CrossRefGoogle Scholar
  22. 22.
    Sha, T., Itoh, M., Tamano, S., Akino, N.: Experimental study on drag reduction in turbulent flow on zigzag riblet surface. In: The 88th Fluid Engineering Division Conference of the Japan Society of Mechanical Engineers, vol. 207, pp. 21. (in Japanese), http://ci.nii.ac.jp/naid/110006207871 (2005)
  23. 23.
    Viotti, C., Quadrio, M., Luchini, P.: Streamwise oscillation of spanwise velocity at the wall of a channel for turbulent drag reduction. Phys. Fluids 21(115), 109 (2009)MATHGoogle Scholar
  24. 24.
    Sasamori, M., Mamori, H., Iwamoto, K., Murata, A.: Experimental study on drag-reduction effect due to sinusoidal riblets in turbulent channel flow. Exp. Fluids 55, 1–14 (2014)CrossRefGoogle Scholar
  25. 25.
    Mamori, H., Yamaguchi, K., Sasamori, M., Iwamoto, K., Murata, A.: Analysis of vortical structure over sinusoidal riblet surface in turbulent channel fow by means of Dual-plane stereoscopic PIV measurement. In: The 69th Annual Meeting of the APS Division of Fluid Dynamics (Abstract:H7.00004) (2016)Google Scholar
  26. 26.
    Yamaguchi, K., Sasamori, M., Mamori, H., Iwamoto, K., Murata, A.: Analysis of vortical structure over a sinusoidal riblet by dual-plane stereoscopic PIV. In: Proc. of International Symposium on Application of Laser Techniques to Fluid Mechanics Lisbon, vol. 119, p. 7 (2014)Google Scholar
  27. 27.
    Kim, J., Kim, D., Choi, H.: An immersed-boundary finite-volume method for simulations of flow in complex geometries. J. Comput. Phys. 171, 132–150 (2001)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Spalart, P.R., MaLean, J.D.: Drag reduction: enticing turbulence, and then an industry. Phil. Trans. R. Soc. A 369, 1556–1569 (2011)CrossRefGoogle Scholar
  29. 29.
    Iwamoto, K., Fukagata, K., Kasagi, N., Suzuki, Y.: Friction drag reduction achievable by near-wall turbulence manipulation at high reynolds numbers. Phys. Fluids 17(011702), 4 (2005)MATHGoogle Scholar
  30. 30.
    Garcia-Mayoral, R., Jimenez, J.: Drag reduction by riblets. Phil. Trans. R. Soc. A 369, 1412–1427 (2011)CrossRefGoogle Scholar
  31. 31.
    Iwamoto, K., Suzuki, Y., Kasagi, N.: Reynolds number effect on wall turbulence: Toward effective feedback control. Int. J. Heat Fluid Flow 23, 678–689 (2002)CrossRefGoogle Scholar
  32. 32.
    Karniadakis, G., Choi, K.S.: Mechanisms on transverse motions in turbulent wall flows. Annu. Rev. Fluid Mech. 35(1), 45–62 (2003)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Jung, W., Mangiavacchi, N., Akhavan, R.: Suppression of turbulence in wall-bounded flows by high-frequency spanwise oscillations. Phys. Fluids A: Fluid Dyn. (1989–1993) 4(8), 1605–1607 (1992)CrossRefGoogle Scholar
  34. 34.
    Chan, L., MacDonald, M., Chung, D., Hutchins, Ooi, A.: A systematic investigation of roughness height and wavelength in turbulent pipe fow in the transitionally rough regime. J. Fluid Mech. 771, 743–777 (2015)CrossRefGoogle Scholar
  35. 35.
    Kasagi, N., Sumitani, Y., Suzuki, Y., Iida, O.: Kinematics of the quasi-coherent vortical structure in near-wall turbulence. Int. J. Heat Fluid Flow 16 (1), 2–10 (1995)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • M. Sasamori
    • 1
  • O. Iihama
    • 1
  • H. Mamori
    • 2
  • K. Iwamoto
    • 1
  • A. Murata
    • 1
  1. 1.Department of Mechanical Systems EngineeringTokyo University of Agriculture and TechnologyTokyoJapan
  2. 2.Department of Mechanical EngineeringTokyo University of ScienceTokyoJapan

Personalised recommendations