Advertisement

Flow, Turbulence and Combustion

, Volume 99, Issue 1, pp 239–278 | Cite as

Large Eddy Simulations of CH4 Fire Plumes

  • G. Maragkos
  • B. Merci
Article

Abstract

Large eddy simulations of large-scale CH4 fire plumes (1.59-2.61 MW) with two different CFD packages, FireFOAM and FDS, are presented. It is investigated how the vorticity generation mechanism and puffing behavior of large-scale fire plumes differs from previously studied iso-thermal buoyant plumes of the same scale. In addition, the predictive capabilities of the turbulence and combustion models, currently used by the two CFD codes, to accurately capture the fire dynamics and the buoyancy-generated turbulence associated with large-scale fire plumes are evaluated. Results obtained with the two CFD codes, typically used for numerical simulations of fire safety applications, are also compared with respect to the average and rms velocities and temperatures, puffing frequencies, average flame heights and entrainment rates using experimental data and well-known correlations in literature. Furthermore, the importance of the applied reaction time scale model in combination with the Eddy Dissipation Model is examined. In particular, the influence of the considered mixing time scales in the predicted centerline temperatures is illustrated and used to explain the discrepancies between the two codes.

Keywords

LES Fire plume FireFOAM FDS 

References

  1. 1.
    Meacham, B.J.: The evolution of performance based codes and fire safety design methods, National Institute of Standards and Technology NIST-GCR-98-761 (1998)Google Scholar
  2. 2.
    Heskestad, G.: Dynamics of the fire plume. Phil. Trans. R. Soc. Lond. A 356, 2815–2833 (1998)CrossRefGoogle Scholar
  3. 3.
    McCaffrey, B.J.: Purely Buoyant Diffusion Flames: Some experimental results, NBSIR 79-1910 national bureau of standards (1979)Google Scholar
  4. 4.
    Zukoski, E.E., Kubota, T., Cetegan, B.: Entrainment in fire plumes. Fire Saf. J. 3, 107–121 (1980)CrossRefGoogle Scholar
  5. 5.
    Cetegen, B.M., Zukoski, E.E., Kubota, T.: Entrainment and Flame Geometry of Fire Plumes, NBS-GCR 80-402, National Bureau of Standards, Gaithersburg, MD (1980)Google Scholar
  6. 6.
    Thomas, P.H., Hinkley, P.L., Theobald, C.R., Simms, D.L.: Investigations into the Flow of Hot Gases in Roof Venting Fire Research Technical Paper. HMSO, London (1995)Google Scholar
  7. 7.
    Hamins, A., Yang, J.C., Kashiwagi, T.: An experimental investigation of the pulsation frequency of flames. Proc. Combust. Inst. 24, 1695–1702 (1992)CrossRefGoogle Scholar
  8. 8.
    Maragkos, G., Rauwoens, P., Wang, Y., Merci, B.: Large eddy simulations of the flow in the near-field region of a turbulent buoyant helium plume. Flow Turbul. Combust. 90, 511–543 (2013)CrossRefGoogle Scholar
  9. 9.
    DesJardin, P.E., O’Hern, T.J., Tieszen, S.R.: Large eddy simulation and experimental measurements of the near-field of a large turbulent helium plume. Phys. Fluids 16, 1866–1883 (2004)CrossRefzbMATHGoogle Scholar
  10. 10.
    Maragkos, G., Merci, B.: Large Eddy Simulations of Large-scale CH4 Fire Plumes Proceedings of the 2nd IAFSS European Symposium of Fire Safety Science (2015)Google Scholar
  11. 11.
    Wang, Y., Chatterjee, P., de Ris, J.L.: Large eddy simulation of fire plumes. Proc. Comb. Inst. 33, 2473–2480 (2011)Google Scholar
  12. 12.
    Tieszen, S.R., O’Hern, T.J., Weckman, E.J., Blanchat, T.K.: Experimental study of the flow field in and around a one meter diameter methane fire. Combust. Flame 129, 378–391 (2002)CrossRefGoogle Scholar
  13. 13.
    Tieszen, S.R., O’Hern, T.J., Weckman, E.J., Schefer, R.W.: Experimental study of the effect of fuel mass flux on a 1-m diameter methane fire and comparison with a hydrogen fire. Combust. Flame 139, 126–141 (2004)CrossRefGoogle Scholar
  14. 14.
    Merci, B., Torero, J.L., Trouve, A.: IAFSS Working group on measurement and computation of fire phenomena. Fire Technol. 52, 607–610 (2016)CrossRefGoogle Scholar
  15. 15.
    Merci, B., Torero, J.L., Trouve, A.: Call for participation in the first workshop organized by the IAFSS Working Group on Measurement and Computation of Fire Phenomena. Fire Saf. J. 82, 146–147 (2016)CrossRefGoogle Scholar
  16. 16.
    Ferraris, S., Wen, J.X., Dembele, S.: Large-eddy Simulation of a Large-scale Methane Pool Fire. Fire Safety Science 8, 963–974 (2005)CrossRefGoogle Scholar
  17. 17.
    Black, A.R.: Numerical Predictions and Experiment Results for a 1m Diameter Methane Fire, ASME International Mechanical Engineering Congress and Exposition, 429–435 (2005)Google Scholar
  18. 18.
    DesJardin, P.E.: Modeling of conditional dissipation rate for flamelet models with application to large eddy simulation of fire plumes. Combust. Sci. Technol. 177, 1883–1916 (2005)CrossRefGoogle Scholar
  19. 19.
    Xin, Y., Filatyev, S.A., Biswas, K., Gore, J.P., Rehm, R.G., Baum, H.R.: Fire dynamics simulations of a one-meter diameter methane fire. Combust. Flame 153, 499–509 (2008)CrossRefGoogle Scholar
  20. 20.
    Pasdarshahri, H., Heidarinejad, G., Mazaheri, K.: Large eddy simulation on one-meter methane pool fire using one-equation sub-grid scale model, MCS 7, Chia Laguna, Cagliari, Sardinia, Italy, September 11–15 (2011)Google Scholar
  21. 21.
    Hu, M., Yuen, A.C.Y., Cheung, S.C.P., Lappas, P., Chow, W.K., Yeoh, G.H.: Modelling of Temporal Combustion Behaviour in a Large-Scale Buoyant Pool Fire with Detailed Chemistry Consideration, International Congress on Modelling and Simulation, Adelaide, Australia (2013)Google Scholar
  22. 22.
    McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K.: Fire dynamics simulator technical reference guide volume 3: validation, NIST Special Publication 1018-3 Sixth Edition (2015)Google Scholar
  23. 23.
    Jasak, H., Jemcov, A., Tuković, Z̆.: OpenFOAM: A C++ Library for Complex Physics Simulations, International Workshop on Coupled Methods in Numerical Dynamics IUC, Dubrovnik, Croatia September 19th-21st (2007)Google Scholar
  24. 24.
    Chen, Z., Wen, J., Xu, B., Dembele, S.: Large eddy simulation of fire dynamics with the improved eddy dissipation concept. Fire Safety Science 10, 795–808 (2011)CrossRefGoogle Scholar
  25. 25.
    Ren, N., Wang, Y., Vilfayeau, S., Truvé, A.: Large eddy simulation of turbulent wall fires, 8th U.S. National Combustion Meeting Paper 070FR-0056 (2013)Google Scholar
  26. 26.
    McGrattan, K., Hostikka, S., McDermott, R., Floyd, J., Weinschenk, C., Overholt, K.: Fire Dynamics Simulator Technical Reference Guide Volume 1: Mathematical model, NIST Special Publication 1018 Sixth Edition (2014)Google Scholar
  27. 27.
    Smagorinsky, J.: General circulation experiments with the primitive equations: I. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  28. 28.
    Lilly, D.K.: A proposed modification of the Germano subgrid scale closure method. Phys. Fluids A 4, 633–635 (1992)CrossRefGoogle Scholar
  29. 29.
    Deardorff, J.W.: Numerical investigation of neutral and unstable planetary boundary layers. J. Atmos. Sci. 29, 91–115 (1972)CrossRefGoogle Scholar
  30. 30.
    Pope, S.B.: Turbulent Flows, Cambridge University Press (2000)Google Scholar
  31. 31.
    Magnussen, B.F., Hjertager, B.H.: On mathematical modeling of turbulent combustion with special emphasis on soot formation and combustion. Proc. Comb. Inst. 16, 719–729 (1976)CrossRefGoogle Scholar
  32. 32.
    McDermott, R., McGrattan, K., Floyd, J.: A simple reaction time scale for Under-Resolved fire dynamics. Fire Safety Science 10, 809–820 (2011)CrossRefGoogle Scholar
  33. 33.
    Fureby, C., Tabor, G.: Mathematical and physical constrains on Large-Eddy simulations. Theor. Comput. Fluid Dyn. 9, 85–102 (1997)CrossRefzbMATHGoogle Scholar
  34. 34.
    Grosshandler, W.L.: RADCAL: A Narrow-Band model for radiation calculations in a combustion environment, NIST technical note 1402 (1993)Google Scholar
  35. 35.
    Hamins, A., Kashiwagi, T., Buch, R. In: Totten, G.E., Reichel, J. (eds.) : Characteristics of Pool Fire Burning, Fire Resistance of Industrial Fluids ASTM STP 1284. American society for testing and materials, Philadelphia (1996)Google Scholar
  36. 36.
    Drysdale, D.: An Introduction to Fire Dynamics, 3rd edn. Wiley, England (2011)CrossRefGoogle Scholar
  37. 37.
    McGrattan, K., Floyd, J., Forney, G., Baum, H.: Improved radiation and combustion routines for a large eddy simulation fire model. Fire Safety Science 7, 827–838 (2003)CrossRefGoogle Scholar
  38. 38.
    NRC: Verification and Validation of Selected Fire Models for Nuclear Power Plant Applications, NUREG-1824, U.S. Nuclear Regulatory Commission, Washington D.C (2007)Google Scholar
  39. 39.
    Chung, W., Devaud, C.B.: Buoyancy-corrected k-models and large eddy simulation applied to a large axisymmetric helium plume. Int. J. Numer. Methods Fluids 58, 57–89 (2008)CrossRefzbMATHGoogle Scholar
  40. 40.
    Pope, S.B.: Ten questions concerning the large-eddy simulation of turbulent flows. New J. Phys. 6, 1–24 (2004)MathSciNetCrossRefGoogle Scholar
  41. 41.
    Celik, I., Klein, M., Janicka, J.: Assessment measures for engineering LES applications. J. Fluids Eng. 031102, 131 (2009)Google Scholar
  42. 42.
    Heskestad, G.: Engineering relations for fire plumes. Fire Saf. J. 7, 25–32 (1984)CrossRefGoogle Scholar
  43. 43.
    Zukoski, E.E. In: Cox, G. (ed.) : Properties of Fire Plumes, Combustion Fundamentals of Fire, pp 101–219. Academic Press, London (1983)Google Scholar
  44. 44.
    Cetegen, B.M., Ahmed, T.A.: Experiments on the periodic instability of buoyant plumes and pool fires. Combust. Flame 93, 157–184 (1993)CrossRefGoogle Scholar
  45. 45.
    Pagni, P.J.: Some unanswered questions in fluid mechanics. App. Mech. Rev. 43, 153–170 (1990)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Heskestad, G.: Luminous heights of turbulent diffusion flames. Fire Saf. J. 5, 109–114 (1983)CrossRefGoogle Scholar
  47. 47.
    Heskestad, G.: Peak gas velocities and flame heights of buoyancy-controlled turbulent diffusion flames. Proc. Comb Inst. 18, 951–960 (1981)CrossRefGoogle Scholar
  48. 48.
    Zukoski, E.E.: Convective Flows Associated with Room Fires, Semi Annual Progress Report, National Science Foundation Grant No GI 31892 X1, Institute of Technology, Pasadena, CA (1975)Google Scholar
  49. 49.
    Karlsson, B., Quintiere, J.G.: Enclosure fire dynamics CRC press (2000)Google Scholar
  50. 50.
    Tamanini, F.: Reaction rates, air entrainment and radiation in turbulent fire plumes. Combust. Flame 30, 85–101 (1977)CrossRefGoogle Scholar
  51. 51.
    Quintiere, J.G., Grove, B.S.: A unified analysis for fire plumes. Proc. Comb. Inst. 27, 2757–2766 (1998)CrossRefGoogle Scholar
  52. 52.
    Delichatsios, M.A., Orloff, L.: Entrainment measurements in turbulent buoyant jet flames and implications for modeling. Proc. Comb. Inst. 20, 267–375 (1984)Google Scholar
  53. 53.
    Heskestad, G.: Fire plume air entrainment according to two competing assumptions. Proc. Comb. Inst. 21, 111–120 (1986)CrossRefGoogle Scholar
  54. 54.
    McCaffrey, B., Cox, G.: Entrainment and heat flux of buoyant diffusion flames, Report NBSIR 82-2473 National Bureau of Standards (1982)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.Department of Flow, Heat and Combustion MechanicsGhent UniversityGhentBelgium

Personalised recommendations