Flow, Turbulence and Combustion

, Volume 98, Issue 4, pp 987–1024 | Cite as

Application of the PITM Method Using Inlet Synthetic Turbulence Generation for the Simulation of the Turbulent Flow in a Small Axisymmetric Contraction



We investigate the turbulence modeling of second moment closure used both in RANS and PITM methodologies from a fundamental point of view and its capacity to predict the flow in a low turbulence wind tunnel of small axisymmetric contraction designed by Uberoi and Wallis. This flow presents a complex phenomenon in physics of fluid turbulence. The anisotropy ratio of the turbulent stresses τ11/τ22 initially close to 1.4 returns to unity through the contraction, but surprisingly, this ratio gradually increases to its pre-contraction value in the uniform section downstream the contraction. This point constitutes the interesting paradox of the Uberoi and Wallis experiment. We perform numerical simulations of the turbulent flow in this wind tunnel using both a Reynolds stress model developed in RANS modeling and a subfilter scale stress model derived from the partially integrated transport modeling method. With the aim of reproducing the experimental grid turbulence resulting from the effects of the square-mesh biplane grid on the uniform wind tunnel stream, we develop a new analytical spectral method of generation of pseudo-random velocity fields in a cubic box. These velocity fields are then introduced in the channel using a matching numerical technique. Both RANS and PITM simulations are performed on several meshes to study the effects of the contraction on the mean velocity and turbulence. As a result, it is found that the RANS computation using the Reynolds stress model fails to reproduce the increase of anisotropy in the centerline of the channel after passing the contraction. In the contrary, the PITM simulation predicts fairly well this turbulent flow according to the experimental data, and especially, the “return to anisotropy” in the straight section of the channel downstream the contraction. This work shows that the PITM method used in conjunction with an analytical synthetic turbulence generation as inflow is well suited for simulating this flow, while allowing a drastic reduction of the computational resources.


Turbulence modeling Second-moment closure PITM method Hybrid RANS-LES simulation Synthetic turbulence generation method Small axisymmetric contraction 


  1. 1.
    Uberoi, M.S.: Effect of wind-tunnel contraction on free-stream Turbulence. J. Aeronaut. Sci. 23, 754–764 (1956)CrossRefGoogle Scholar
  2. 2.
    Uberoi, M.S.: Equipartition of energy and local isotropy in turbulent flows. J. Appl. Phys. 28, 1165–1170 (1957)CrossRefMATHGoogle Scholar
  3. 3.
    Uberoi, M.S., Wallis, S.: Small axisymmetric contraction of grid turbulence. J. Fluid Mech. 24, 539–543 (1966)CrossRefGoogle Scholar
  4. 4.
    Jang, S.J., Sung, H.J., Krogstad, P.: Effects of an axisymmetric contraction on a turbulent pipe flow. J. Fluid Mech. 687, 376–403 (2011)CrossRefMATHGoogle Scholar
  5. 5.
    Lee, J., Jang, S.J., Sung, H.J.: Direct numerical simulation of turbulent flow in a conical diffuser. J. Turbul. 13, 1–29 (2012)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Lumley, J., Newman, G.: The return to isotropy of homogeneous turbulence. J. Fluid Mech. 82, 161–178 (1977)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Naot, D.: Rapid distortion solutions for a stress transport turbulence model in a contracting flow. Phys. Fluids 21, 752–756 (1977)CrossRefGoogle Scholar
  8. 8.
    Tsuge, S.: Effects of the flow contraction on evolution of turbulence. Phys. Fluids 27, 1948–1956 (1984)CrossRefMATHGoogle Scholar
  9. 9.
    Lee, M.J.: Distortion of homogeneous turbulence by axisymmetric strain and dilatation. Phys. Fluids A 9, 1541–1557 (1989)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Sjögren, T., Johansson, A.: Measurement and modelling of homogeneous axisymmetric turbulence. J. Fluid Mech. 374, 59–90 (1988)CrossRefGoogle Scholar
  11. 11.
    Comte-Bellot, G., Corrsin, S.: The use of a contraction to improve the isotropy of grid-generated turbulence. J. Fluid Mech. 25, 657–682 (1966)CrossRefGoogle Scholar
  12. 12.
    Bennet, J.C., Corrsin, S.: Small Reynolds number nearly isotropic turbulence in a straight duct and a contraction. Phys. Fluids 21, 2129–2140 (1978)CrossRefGoogle Scholar
  13. 13.
    Ertunc, O., Durst, F.: On the high contraction ratio anomaly of axisymmetric contraction of grid-generated turbulence. Phys. Fluids 20(025103), 1–15 (2008)MATHGoogle Scholar
  14. 14.
    Antonia, R.A., Lavoie, P., Djenidi, L., Benaissa, A.: Effect of a small axisymmetric contraction on grid turbulence. Exp. Fluids 49, 3–10 (2010)CrossRefGoogle Scholar
  15. 15.
    Uberoi, M.S., Wallis, S.: Effects of grid geometry on turbulence decay. Phys. Fluids 10, 1216–1224 (1967)CrossRefGoogle Scholar
  16. 16.
    Lesieur, M., Metais, O.: New trends in large-eddy simulations of turbulence. Ann. Rev J. Fluid Mech. 28, 45–82 (1996)CrossRefGoogle Scholar
  17. 17.
    Spalart, P.R.: Detached-eddy simulation. Annu. Rev. Fluid Mech. 41, 181–202 (2009)CrossRefMATHGoogle Scholar
  18. 18.
    Leschziner, M., Li, M.N., Tessicini, F.: Simulating flow separation from continuous surfaces: routes to overcoming the Reynolds number barrier Phil. Trans. R. Soc. A 367, 2885–2903 (2009)CrossRefMATHGoogle Scholar
  19. 19.
    Choi, H., Moin, P.: Grid-point requirements for large eddy simulation: Chapman’s estimates revisited. Phys. Fluids 24(011702), 1–5 (2012)Google Scholar
  20. 20.
    Chaouat, B., Schiestel, R.: Progress in subgrid-scale transport modelling for continuous hybrid non-zonal RANS/LES simulations. Int. J. Heat Fluid Flow 30, 602–616 (2009)CrossRefGoogle Scholar
  21. 21.
    Chaouat, B.: Simulation of turbulent rotating flows using a subfilter scale stress model derived from the partially integrated transport modeling method. Phys. Fluids 24(045108), 1–35 (2012)Google Scholar
  22. 22.
    Chaouat, B.: Subfilter-scale transport model for hybrid RANS/LES simulations applied to a complex bounded flow. J. Turbul. 11, 1–30 (2010)CrossRefGoogle Scholar
  23. 23.
    Schiestel, R.: Modeling and Simulation of Turbulent Flows. ISTE Ltd and J. Wiley) (2008)Google Scholar
  24. 24.
    Gatski, T.B.: Second-moment and scalar flux representations in engineering and geophysical flows. Fluid Dyn. Res. 41(012202), 1–24 (2009)MATHGoogle Scholar
  25. 25.
    Leschziner, M.A., Drikakis, D.: Turbulence modelling and turbulent-flow computation in aeronautics. The Aeronaut. J. 106, 349–383 (2002)Google Scholar
  26. 26.
    Hanjalic, K., Launder, B.E.: Modelling Turbulence in Engineering and the Environnement. Second-Moment Route to Closure. Cambridge University Press (2011)Google Scholar
  27. 27.
    Chaouat, B.: Simulations of channel flows with effects of spanwise rotation or wall injection using a Reynolds stress model. J. Fluids Eng. ASME 123, 2–10 (2001)CrossRefGoogle Scholar
  28. 28.
    Chaouat, B.: Numerical predictions of channel flows with fluid injection using Reynolds stress model. J. Propul. Power 18(12), 295–303 (2002)CrossRefGoogle Scholar
  29. 29.
    Chaouat, B.: Reynolds stress transport modeling for high-lift airfoil flows. AIAA J. 44(10), 2390–2403 (2006)CrossRefGoogle Scholar
  30. 30.
    Hanjalic, K., Launder, B.E., Schiestel, R.: Multiple-time scale concepts in turbulent transport modelling. In: Proceedings of the 2th Symposium on Turbulence Shear Flow, edited by Springer Verlag, pp. 36–49 (1890)Google Scholar
  31. 31.
    Schiestel, R.: Multiple-time scale modeling of turbulent flows in one point closures. Phys. Fluids 30, 722–731 (1987)CrossRefMATHGoogle Scholar
  32. 32.
    Cadiou, A., Hanjalic, K., Stawiarski, K.A.: two-scale second-moment turbulence closure based on weighted spectrum integration. Theor. Comput. Fluid Dyn. 18, 1–26 (2004)CrossRefMATHGoogle Scholar
  33. 33.
    Stawiarski, K., Hanjalic, K.: On physical constraints for multi-scale turbulence closure models. Progress Comput. Fluid Dyn. 5, 120–135 (2005)CrossRefMATHGoogle Scholar
  34. 34.
    Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Prog. Aerosp. Sci. 44, 349–377 (2008)CrossRefGoogle Scholar
  35. 35.
    Argyropoulos, C.D., Markatos, N.C.: Recent advances on the numerical modelling of turbulent flows. Appl. Math. Modell. 39, 693–732 (2015)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Schiestel, R., Dejoan, A.: Towards a new partially integrated transport model for coarse grid and unsteady turbulent flow simulations. Theor. Comput. Fluid Dyn. 18, 443–468 (2005)CrossRefMATHGoogle Scholar
  37. 37.
    Chaouat, B., Schiestel, R.: A new partially integrated transport model for subgrid-scale stresses and dissipation rate for turbulent developing flows. Phys. Fluids 17(065106), 1–19 (2005)MATHGoogle Scholar
  38. 38.
    Chaouat, B., Schiestel, R.: From single-scale turbulence models to multiple-scale and subgrid-scale models by Fourier transform. Theor. Comput. Fluid Dyn. 21, 201–229 (2007)CrossRefMATHGoogle Scholar
  39. 39.
    Chaouat, B., Schiestel, R.: Analytical insights into the partially integrated transport modeling method for hybrid Reynolds averaged Navier-Stokes equations-large eddy simulations of turbulent flows. Phys. Fluids 24(085106), 1–34 (2012)Google Scholar
  40. 40.
    Chaouat, B., Schiestel, R.: Hybrid RANS-LES simulations of the turbulent flow over periodic hills at high Reynolds number using the PITM method. Comput. Fluids 84, 279–300 (2013)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Chaouat, B.: A new partially integrated transport modelling (PITM) method for continuous hybrid non-zonal RANS-LES simulations. In: Third Hybrid RANS-LES Methods, vol. 111, pp. 213–224. Edited by Springer (2010)Google Scholar
  42. 42.
    Launder, B.E., Reece, G.J., Rodi, W.: Progress in the development of a Reynolds stress turbulence closure. J. Fluid Mech. 68, 537–566 (1975)CrossRefMATHGoogle Scholar
  43. 43.
    Hanjalic, K., Launder, B.E.: A Reynolds stress model of turbulence and its application to thin shear flow. J. Fluid Mech. 52, 609–638 (1972)CrossRefMATHGoogle Scholar
  44. 44.
    Speziale, C.G., Sarkar, S., Gatski, T.B.: Modelling the pressure-strain correlation of turbulence: an invariant dynamical system approach. J. Fluid Mech. 227, 245–272 (1991)CrossRefMATHGoogle Scholar
  45. 45.
    Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part I. J. Theor. Appl. Mech. 2(3), 417–449 (1983)MATHGoogle Scholar
  46. 46.
    Schiestel, R.: Sur le concept d’échelles multiples en modélisation des écoulements turbulents, Part II. J. Theor. Appl. Mech. 2(4), 601–628 (1983)MATHGoogle Scholar
  47. 47.
    Chaouat, B., Schiestel, R.: Partially integrated transport modeling method for turbulence simulation with variable filters. Phys. Fluids 25(125102), 1–39 (2013)MATHGoogle Scholar
  48. 48.
    Hamba, F.: Analysis of filtered Navier-Stokes equation for hybrid RANS/LES simulation. Phys. Fluids 23(015108), 1–13 (2011)Google Scholar
  49. 49.
    Roy, P.h.: Résolution des équations de Navier-Stokes par un schéma de haute précision en espace et en temps. Rech. Aerosp. 6, 373–385 (1980)MATHGoogle Scholar
  50. 50.
    Befeno, I., Schiestel, R.: Non-equilibrium mixing of turbulence scales using a continuous hybrid RANS/LES approach: application to the shearless mixing layer Flow. Turbul. Combust. 78, 129–151 (2007)CrossRefMATHGoogle Scholar
  51. 51.
    Wengle, H, Schiestel, R., Befeno, I., Meri, A.: Large-eddy simulation of the spatial development of a shearless turbulence mixing layer. In: Hirschel, E. H., Henrich, E. (eds.) Numerical Flow simulation III, vol. 82. 271–286, Berlin Heidelberg (2003)Google Scholar
  52. 52.
    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: Synthetic turbulence generators for RANS-LES interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow, Turbul. Combust. 93, 63–92 (2014)CrossRefGoogle Scholar
  53. 53.
    Chaouat, B.: An efficient numerical method for RANS/LES turbulent simulations using subfilter scale stress transport equations. Int. J. Numer. Meth. Fluids 67, 1207–1233 (2011)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Moser, R., Kim, D., Mansour, N.: Direct numerical simulation of turbulent channel flow up to R τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATHGoogle Scholar
  55. 55.
    Stoellinger, M., Roy, R., Heinz, S.: Unified RANS-LES method based on second-order closure. In: Proceedings of the 9th Symposium on Turbulence Shear Flow Phenomena, edited by The University of Melbourne, 7B5, pp. 1–6 (2015)Google Scholar
  56. 56.
    Simonsen, A.J., Krogstad, P.A.: Turbulent stress invariant analysis: Classification of existing terminology. Phys. Fluids 17(088103), 1–4 (2005)MATHGoogle Scholar
  57. 57.
    Dubief, Y., Delcayre, F.: On coherent-vortex identification in turbulence. J. Turbul. 1 N11, 1–22 (2000)MATHGoogle Scholar
  58. 58.
    Lee, M.J., Reynolds, W.C.: Numerical experiments on the structure of homogeneous turbulence, NASA Tech. Memo NCC-2-15, Report No. TF-24. Edited by Stanford University, California (1985)Google Scholar
  59. 59.
    Schiestel, R.: On the modelling of turbulent flows out of spectral equilibrium. C. R. Acad. Sci. Paris 302(11), 727–730 (1986)MATHGoogle Scholar
  60. 60.
    Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press (1992)Google Scholar
  61. 61.
    Jeandel, D., Brison, J.F., Mathieu, J.: Modeling methods in physical and spectral space. Phys. Fluids 21, 169–182 (1978)MathSciNetCrossRefMATHGoogle Scholar
  62. 62.
    Cambon, C., Jeandel, D., Mathieu, J.: Spectral modelling of homogeneous non-isotropic turbulence. J. Fluid Mech. 104, 247–262 (1981)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  1. 1.ONERAChâtillonFrance

Personalised recommendations