Flow, Turbulence and Combustion

, Volume 97, Issue 4, pp 1185–1210 | Cite as

Flow Physics of a Bluff-Body Swirl Stabilized Flame and their Prediction by Means of a Joint Eulerian Stochastic Field and Tabulated Chemistry Approach

Article
  • 218 Downloads

Abstract

In the frame of this work a transported joint scalar probability density function (PDF) method is combined with the flamelet generated manifolds (FGM) tabulated chemistry approach for large eddy simulation (LES) modeling of a three-dimensional turbulent premixed swirl burner. This strategy accounts for the turbulence-chemistry interaction at reasonable computational costs. At the same time, it allows the usage of detailed chemistry mechanisms for the creation of the chemical database. The simulation results obtained are comparatively assessed along with complementary measurements. Furthermore, transient and time-averaged data are used to provide insight into the flow physics of the bluff-body swirl stabilized flame considered. The sensitivity of the results to different modeling approaches regarding the predicted flame shape and its dynamics is also investigated, where the implemented approach is compared with the well-established artificially thickened flame (ATF) combustion model. Consequently, the investigation conducted in this work aims to provide a complete picture on the ability of the proposed combustion model to reproduce the flow conditions within complex bluff-body swirl stabilized flames.

Keywords

Large eddy simulation Turbulent premixed combustion Tabulated chemistry Joint probability density function Artificially thickened flame 

Nomenclature

Cs

Smagorinsky coefficient

CΩ

Micro-mixing constant

dh

Hydraulic diameter

Da

Damköhler number

\(\text {dW}_{j}^{n}\)

nth Wiener process in j direction

\(\mathcal {E}\)

Efficiency function

\(\mathcal {F}\)

Thickening factor

\(\mathcal {G}\)

Spatial filtering operator

h

Specific enthalpy of the mixture

Ka

Karlovitz number

Le

Lewis number

m

Mass

N

Number of stochastic fields

Nα

Number of table controlling variables

Pr

Prandtl number

Re

Reynolds number

ReΔ

Sub-grid turbulent Reynolds number corresponding to the filter size Δ

S

Swirl number

Sij

Rate of strain

Sc

Schmidt number

sl

Laminar flame speed

T

Temperature

t

Time

\(\mathcal {T}\)

Effective straining function

uj

Velocity in j direction

\(u_{\Delta }^{\prime }\)

Velocity fluctuation at the test filter size Δ

x,y,z

Spatial coordinate

Ym

Mass fraction of species m

\(\mathcal {Z}\)

Mixture fraction

δ

Flame thickness

δij

Kronecker-symbol

Δ

Grid size

Δt

Time step size

Δe

Colin test filter size

\(\zeta \left (0,1 \right )\)

Dichotomic vector

μ

Dynamic viscosity

ν

Kinematic viscosity

\(\xi _{\alpha }^{n}\)

nth stochastic field of the scalar α

Ξ

Flame wrinkling factor

ρ

Density

τij

Components of the viscous stress tensor

τsgs

Sub-grid mixing time scale

φ

Arbitrary quantity

ϕ

General species/scalar

χ

Scalar dissipation rate

Ω

Flame sensor

\(\dot {\omega }\)

Chemical source term

0

Property of an unmodified flame in the ATF context

F

Property of a thickened flame in the ATF context

l

Laminar

m

Species

nr

Normalized

\(\cdot _{\max }\)

Maximum

sgs

Sub-grid scale

t

Turbulent

α

Table controlling variable

References

  1. 1.
    Avdić, A., Kuenne, G., di Mare, F., Janicka, J.: LES combustion modeling using the Eulerian stochastic field method coupled with tabulated chemistry. Combust Flame In Press Corrected Proof doi:10.1016/j.combustflame.2016.06.015(2016)
  2. 2.
    Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion, 3rd edn. Thierry Poinsot, Bordeaux (2012)Google Scholar
  3. 3.
    Smagorinsky, J.: General circulation experiments with the primitive equations, 1. The basic experiment. Mon. Weather Rev. 91, 99–164 (1963)CrossRefGoogle Scholar
  4. 4.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A-Fluid 3(7), 1760–1765 (1991)CrossRefMATHGoogle Scholar
  5. 5.
    Lilly, D.K.: A proposed modification of the Germano subgrid-scale closure method. Phys. Fluids A-Fluid 4(3), 633–635 (1992)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Boger, M., Veynante, D., Boughanem, H., Trouve, A., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Symposium (International) on Combustion 27, 917–925 (1998)CrossRefGoogle Scholar
  7. 7.
    Smooke, M.D.: Reduced kinetic mechanisms and asymptotic approximations for Methane-Air flames. Lecture notes in physics, 384 (1991)Google Scholar
  8. 8.
    Peters, N., Rogg, B.: Reduced Kinetic Mechanisms for Application in Combustion Systems (1993)Google Scholar
  9. 9.
    Van Oijen, J.A., de Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust Sci. Technol. 161(1), 113–137 (2000)CrossRefGoogle Scholar
  10. 10.
    Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust 91(4), 867–893 (2013)CrossRefGoogle Scholar
  11. 11.
    CHEM1D (www.combustion.tue.nl/chem1d) A one-dimensional laminar flame code, developed at Eindhoven University of Technology
  12. 12.
    Smith, G.P., Golden, D.M., Frenklach, M., Moriarty, N.W., Eiteneer, B., Goldenberg, M., Bowman, C.T., Hanson, R.K., Song, S., Jr, W.C.G., Lissianski, V.V., Qin, Z. (www.me.berkeley.edu/gri_mech/) GRI-Mech 3.0
  13. 13.
    Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust Theor Model 7(3), 449–470 (2003)CrossRefGoogle Scholar
  14. 14.
    Vreman, A.W., Albrecht, B., van Oijen, J.A., de Goey, L.P.H., Bastiaans, R.J.M.: Premixed and nonpremixed generated manifolds in large-eddy simulation of Sandia flame D and F. Combust Flame 153(3), 394–416 (2008)CrossRefGoogle Scholar
  15. 15.
    Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust Flame 158(9), 1750–1767 (2011)CrossRefGoogle Scholar
  16. 16.
    Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed Generated Manifolds for the Computation of Technical Combustion Systems. In: Proceedings of ASME Turbo Expo 2009, p 11 (2009)Google Scholar
  17. 17.
    De Goey, L.P.H., ten Thije Boonkkamp, J.H.M.: A flamelet description of premixed laminar flames and the relation with flame stretch. Combust Flame 119(99), 253—271 (1999)Google Scholar
  18. 18.
    Van Oijen, J.A., Groot, G.R.A., Bastiaans, R.J.M., De Goey, L.P.H.: A flamelet analysis of the burning velocity of premixed turbulent expanding flames. P. Combust Inst. 30, 657–664 (2005)CrossRefMATHGoogle Scholar
  19. 19.
    Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1D Raman/Rayleigh scattering and large eddy simulation. Combust Flame 159(8), 2669–2689 (2012)CrossRefGoogle Scholar
  20. 20.
    Gao, F., O’Brien, E.E.: A large-eddy simulation scheme for turbulent reacting flows. Phys. Fluids A-Fluid 5(6), 1282–1284 (1993)CrossRefMATHGoogle Scholar
  21. 21.
    Pope, S.B.: PDF methods for turbulent reactive flows. Prog. Energ. Combust 11(2), 119–192 (1985)CrossRefGoogle Scholar
  22. 22.
    Jones, W.P., Navarro-Martinez, S.: Numerical Study of n-Heptane Auto-ignition Using LES-PDF Methods. Flow Turbul. Combust 83(3), 407–423 (2009)CrossRefMATHGoogle Scholar
  23. 23.
    Valiño, L.: A field Monte Carlo formulation for calculating the probability density function of a single scalar in a turbulent flow. Flow Turbul. Combust 60(2), 157–172 (1998)CrossRefMATHGoogle Scholar
  24. 24.
    Dopazo, C.: Probability density function approach for a turbulent axisymmetric heated jet. Centerline evolution. Phys. Fluids 18(4), 397–404 (1975)CrossRefMATHGoogle Scholar
  25. 25.
    Mustata, R., Valiño, L., Jiménez, C., Jones, W.P., Bondi, S.: A probability density function Eulerian Monte Carlo field method for large eddy simulations: Application to a turbulent piloted methane/air diffusion flame (Sandia D). Combust Flame 145(1-2), 88–104 (2006)CrossRefGoogle Scholar
  26. 26.
    Jones, W.P., Navarro-Martinez, S., Röhl, O.: Large eddy simulation of hydrogen auto-ignition with a probability density function method. P. Combust Inst. 31(2), 1765–1771 (2007)CrossRefGoogle Scholar
  27. 27.
    Jones, W.P., Marquis, A.J., Prasad, V.: LES of a turbulent premixed swirl burner using the Eulerian stochastic field method. Combust Flame 159(10), 3079–3095 (2012)CrossRefGoogle Scholar
  28. 28.
    Kloeden, P.E., Platen, E.: Numerical solution of stochastic differential equations. Springer, Berlin (1992)CrossRefMATHGoogle Scholar
  29. 29.
    Valiño, L., Mustata, R., Letaief, K.B.: Consistent Behavior of Eulerian Monte Carlo fields at Low Reynolds Numbers. Flow Turbul. Combust 96(2), 503–512 (2016)CrossRefGoogle Scholar
  30. 30.
    Bulat, G., Jones, W.P., Marquis, A.J.: NO and CO formation in an industrial gas-turbine combustion chamber using LES with the Eulerian sub-grid PDF method. Combust Flame 161, 1804–1825 (2014)CrossRefGoogle Scholar
  31. 31.
    Jones, W.P., Marquis, A.J., Wang, F.: Large eddy simulation of a premixed propane turbulent bluff body flame using the Eulerian stochastic field method. Fuel 140, 514–525 (2015)CrossRefGoogle Scholar
  32. 32.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12 (7), 1843–1863 (2000)CrossRefMATHGoogle Scholar
  33. 33.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust Flame 131(1–2), 159–180 (2002)CrossRefGoogle Scholar
  34. 34.
    Durand, L., Polifke W.: Implementation of the thickened flame model for large eddy simulation of turbulent premixed combustion in a commercial solver. In: ASME Turbo Expo. Conference Proceedings, pp 869–878 (2007)Google Scholar
  35. 35.
    Schneider, C., Dreizler, A., Janicka, J.: Fluid dynamical analysis of atmospheric reacting and isothermal swirling flows. Flow Turbul. Combust 74(1), 103–127 (2005)CrossRefMATHGoogle Scholar
  36. 36.
    Gregor, M., Seffrin, F., Fuest, F., Geyer, D., Dreizler, A.: Multi-scalar measurements in a premixed swirl burner using D Raman/Rayleigh scattering. P. Combust Inst. 32(2), 1739–1746 (2009)CrossRefGoogle Scholar
  37. 37.
    Lehnhaeuser, T., Schaefer, M.: Improved linear interpolation practice for finite-volume schemes on complex grids. Int. J. Numer. Meth. Fl 38(7), 625–645 (2002)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes . In: 14th International Conference on Numerical Methods in Fluid Dynamics, pp 372–378. Springer, Berlin (1995)Google Scholar
  39. 39.
    der Houwen, P.J.V.: Explicit Runge-Kutta formulas with increased stability boundaries. Numer. Math. 20(2), 149–164 (1972)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    Williamson, J.H.: Low-storage Runge-Kutta schemes. J. Comput. Phys. 35(1), 48–56 (1980)MathSciNetCrossRefMATHGoogle Scholar
  41. 41.
    Biagioli, F.: Stabilization mechanism of turbulent premixed flames in strongly swirled flows. Combust Theor Model 10(3), 389–412 (2006)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Institute of Energy and Power Plant TechnologyTU DarmstadtDarmstadtGermany

Personalised recommendations