Flow, Turbulence and Combustion

, Volume 97, Issue 4, pp 1047–1069 | Cite as

Modelling the Plasma-actuator-related Turbulence Production in RANS Closures by Reference to Complementary Experimental Investigations

  • I. Maden
  • R. Maduta
  • J. Hofmann
  • S. JakirlićEmail author
  • J. Kriegseis
  • C. Tropea
  • S. Grundmann


Complementary experimental and computational study on flow separation delay at a NACA 0015 airfoil affected by a DBD (Dielectric-Barrier-Discharge) plasma actuator is presented. The effect of the DBD plasma-actuator on the flow development towards its appropriate control is accounted through a relevant body force representing a source term in the equation of motion. The spatial distribution of the force is calculated from the time-averaged properties of the experimentally obtained (by particle image velocimetry - PIV) velocity field by applying the Reynolds-Averaged Navier-Stokes equations. The study focusses in particular on the specific plasma-related turbulence production in the equations governing the Reynolds-stress tensor. Prior to studying the airfoil configuration the computational determination of the body force and corresponding turbulence generation rate is analyzed in a wall jet flow induced by the DBD plasma actuator.


Plasma-actuated flow control Plasma-actuator-related body force Wall-jet NACA 0015 airfoil Particle-image velocimetry CFD Reynolds-stress modelling Plasma-actuator-related turbulence production 



The authors gratefully acknowledge financial support by the German Research Foundation (Deutsche Forschungsgemeinschaft) under grant EXC 259.


  1. 1.
    Albrecht, T., Weier, T., Gerbeth, G., Metzkes, H., Stiller, J.: A method to estimate the planar, instantaneous body force distribution from velocity field measurements. Phys. Fluids 23(2), 021702 (2011)CrossRefGoogle Scholar
  2. 2.
    Benard, N., Moreau, E.: Capabilities of the dielectric barrier discharge plasma actuator for multi-frequency excitations. J. Phys. D. Appl. Phys. 43(14), 145201 (2010)CrossRefGoogle Scholar
  3. 3.
    Benard, N., Moreau, E.: On the Vortex Dynamic of Airflow Reattachment Forced by a Single Non-thermal Plasma Discharge Actuator. Flow Turbul. Combust. 87(1), 1–13 (2011)CrossRefzbMATHGoogle Scholar
  4. 4.
    Benard, N., Debien, A., Moreau, E.: Time-dependent volume force produced by a non-thermal plasma actuator from experimental velocity field. J. Phys. D. Appl. Phys. 46(24), 245201 (2013)CrossRefGoogle Scholar
  5. 5.
    Benard, N., Moreau, E.: Electrical and mechanical characteristics of surface AC dielectric barrier discharge plasma actuators applied to airflow control. Exp. Fluids 55, 11 (2014)CrossRefGoogle Scholar
  6. 6.
    Boeuf, J.P., Lagmich, Y., Unfer, T., Callegari, T., Pitchford, L.C.: Electrohydrodynamic force in dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 40, 652–662 (2007)CrossRefGoogle Scholar
  7. 7.
    Cooper, D., Jackson, D.C., Launder, B.E., Liao, G.X.: Impinging jet studies for turbulence model assessment I. Flow-field experiments. Int. J. Heat and Mass Transfer 36(10), 2675–2684 (1993)CrossRefGoogle Scholar
  8. 8.
    Corke, T.C., Post, M.L.: Overview of plasma flow control: concepts, optimization, and applications. AIAA Paper No. 2005-563, 43rd AIAA Aerospace Sciences Meeting and Exhibit Reno, NV, USA, January 10–13 (2005)Google Scholar
  9. 9.
    Debien, A., Benard, N., David, L., Moreau, E.: Unsteady aspect of the electrohydrodynamic force produced by surface dielectric barrier discharge actuators. Appl. Phys. Lett. 100(1), 013901 (2012)CrossRefGoogle Scholar
  10. 10.
    Font, G.I.: Boundary-Layer Control with Atmospheric Plasma Discharges. AIAA J. 44, 1572–1578 (2006)CrossRefGoogle Scholar
  11. 11.
    Forte, M., Jolibois, J., Pons, J., Moreau, E., Touchard, G., Cazalens, M.: Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity: application to airflow control. Exp. Fluids 43(6), 917–928 (2007)CrossRefGoogle Scholar
  12. 12.
    Greenblatt, D., Wygnanski, I.J.: The control of flow separation by periodic excitation. Prog. Aerosp. Sci. 36(7), 487–545 (2000)CrossRefGoogle Scholar
  13. 13.
    Jacob, J.D., Ramakumar, K., Anthony, R., Rivir, R.: Control of laminar and turbulent shear flows using plasma actuators. In: Proceedings of the 4th International Symposium on Turbulence and Shear Flow Phenomena, pp 27–29 (2005)Google Scholar
  14. 14.
    Jakirlić, S., Hanjalić, K.: A new approach to modelling near-wall turbulence energy and stress dissipation. J. Fluid Mech. 439, 139–166 (2002)zbMATHGoogle Scholar
  15. 15.
    Jakirlić, S., Maduta, R.: Extending the bounds of ‘steady’ RANS closures: toward an instability-sensitive Reynolds stress model. Int. J. Heat Fluid Flow 51, 175–194 (2015)CrossRefGoogle Scholar
  16. 16.
    Jayaraman, B., Shyy, W.: Modeling of dielectric barrier discharge-induced fluid dynamics and heat transfer. Prog. Aerosp. Sci. 44, 139–191 (2008)CrossRefGoogle Scholar
  17. 17.
    Jolibois, J., Forte, M., Moreau, E.: Application of an AC barrier discharge actuator to control airflow separation above a NACA 0015 airfoil: optimization of the actuation location along the chord. J. Electrost. 66(9), 496–503 (2008)CrossRefGoogle Scholar
  18. 18.
    Kenjereṡ, S., Hanjalić, K.: On the implementation of effects of Lorentz force in turbulence closure models. Int. J. Heat Fluid Flow 21(3), 329–337 (2000)CrossRefGoogle Scholar
  19. 19.
    Kenjereṡ, S., Hanjalić, K., Bal, D.: A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows. Phys. Fluids (1994-present) 16(5), 1229–1241 (2004)CrossRefzbMATHGoogle Scholar
  20. 20.
    Kotsonis, M.: Diagnostics for characterisation of plasma actuators. Meas. Sci. Technol. 26(9), 092001 (2015)CrossRefGoogle Scholar
  21. 21.
    Kriegseis, J., Schwarz, C., Tropea, C., Grundmann, S.: Velocity-information-based force-term estimation of dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 46, 055202 (2013)Google Scholar
  22. 22.
    Kriegseis, J., Maden, I., Schwarz, C., Tropea, C., Grundmann, S.: Addendum to Velocity-information-based force-term estimation of dielectric barrier discharge plasma actuators. J. Phys. D. Appl. Phys. 48, 329401 (2015)CrossRefGoogle Scholar
  23. 23.
    Launder, B.E.: On the effects of a gravitational field on the turbulent transport of heat and momentum. J. Fluid Mech. 67, 569–581 (1975)CrossRefGoogle Scholar
  24. 24.
    Maden, I., Maduta, R., Kriegseis, J., Jakirlić, S., Schwarz, C., Grundmann, S., Tropea, C.: Experimental and computational study of the flow induced by a plasma actuator. Int. J. Heat Fluid Flow 41, 80–89 (2013)CrossRefGoogle Scholar
  25. 25.
    Maden, I., Barckmann, K., Kriegseis, J., Jakirlić, S., Grundmann, S.: Evaluating Force Fields induced by a Plasma Actuator using the Reynolds-Averaged Navier Stokes Equation, AIAA Paper No. 2104-0326, 52nd AIAA Aerospace Sciences Meeting, National Harbor, MD, USA, January 13–17 (2014)Google Scholar
  26. 26.
    Murphy, J.P., Kriegseis, J., Lavoie, P.: Scaling of maximum velocity, body force and power consumption of dielectric barrier discharge plasma actuators via particle image velocimetry. J. Appl. Phys. 113(24), 243301 (2013)Google Scholar
  27. 27.
    Shyy, W., Jayaraman, B., Andersson, A.: Modeling of glow discharge-induced fluid dynamics. J. Appl. Phys. 92, 6434 (2002)CrossRefGoogle Scholar
  28. 28.
    Suzen, Y.B., Huang, P.G., Jacob, J.D., Asphis, D.E.: Numerical Simulations of Plasma Based Flow Control Applications, AIAA Paper No. 2005-4633, 35th Fluid Dynamics Conference and Exhibit June 6-9, 2005, Toronto, Ontario Canada (2005)Google Scholar
  29. 29.
    Wilke, B.: Aerodynamische Strömungssteuerung mittels dielektrischen Barriereentladungs-Plasmaaktuatoren. PhD Thesis, DLR Göttingen, Germany (2009)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • I. Maden
    • 1
  • R. Maduta
    • 2
  • J. Hofmann
    • 1
  • S. Jakirlić
    • 1
    Email author
  • J. Kriegseis
    • 3
  • C. Tropea
    • 1
  • S. Grundmann
    • 4
  1. 1.Technische Universität Darmstadt, Department of Mechanical Engineering, Institute of Fluid Mechanics and Aerodynamics (SLA) / Center of Smart Interfaces (CSI)DarmstadtGermany
  2. 2.Outotec GmbHOberurselGermany
  3. 3.Karlsruhe Institute of Technology (KIT), Department of Mechanical Engineering, Institute of Fluid Mechanics (ISTM)KarlsruheGermany
  4. 4.University of Rostock, Department of Mechanical Engineering, Institute of Fluid Mechanics (ISM)RostockGermany

Personalised recommendations