Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

A Comprehensive Study of Improved Delayed Detached Eddy Simulation with Wall Functions


The paper presents the results of Improved Delayed Detached Eddy Simulation (IDDES) in combination with wall functions for the wall boundary conditions specification. It is shown that good agreement with the solutions on the conventional grids with \({\Delta } y^{+}_{w}\)<1 can be achieved on grids with wall-normal steps gradually changing between 1 % and 5 % of the boundary layer thickness near the wall and in the core-flow respectively. At the same time, using of coarser grids results in a noticeable discrepancy for the mean and RMS velocity, which is attributed to the lack of the wall-normal resolution rather than to the wall boundary conditions.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23


  1. 1.

    Fröhlich, J., Von Terzi, D.: Hybrid LES/RANS methods for the simulation of turbulent flows. Progress Aerosp. Sci. 44, 349–377 (2008)

  2. 2.

    Spalart, P.R.: Detached eddy simulation. Ann. Rev. Fluid Mech. 41, 181–202 (2009)

  3. 3.

    Menter, F.R., Schütze, J., Gritskevich, M.S.: Global vs. zonal approaches in hybrid RANS-LES turbulence modelling. In: Progress in Hybrid RANS-LES Modelling, Notes on Numerical Fluid Mechanics and Multidisciplinary Design Volume 117. pp. 15–28 (2012)

  4. 4.

    Spalart, P.: Young-person’s guide to detached eddy simulation grids. NASA CR-2001-211032. 1–23 (2001)

  5. 5.

    Launder, B.E., Spalding, D.B.: The numerical computation of turbulent flows. Comput. Methods Appl. Mech. Eng. 3, 269–289 (1974)

  6. 6.

    Grotjans, H., Menter, F.: Wall functions for general application CFD codes. In: Proceedings of ECCOMAS 1998. pp. 1112–1117 (1998)

  7. 7.

    Esch, T., Menter, F.R.: Heat transfer prediction based on two-equation turbulence models with advanced wall treatment. In: Turbulence Heat an Mass Transfer 4. pp. 1–8 (2003)

  8. 8.

    Menter, F., Carregal Ferreira, J., Esch, T., Konno, B.: The SST turbulence model with improved wall treatment for heat transfer predictions in gas turbines. In: Proceedings of the International Gas Turbine Congress 2003 Tokyo. pp. 1–7 (2003)

  9. 9.

    Craft, T.J., Gant, S.E., Iacovides, H., Launder, B.E.: A new wall function strategy for complex turbulent flows. Numer. Heat Tran. 45, 301–318 (2004)

  10. 10.

    Piomelli, U.: Wall-layer models for large-eddy simulations. Progress Aerosp. Sci. 44, 437–446 (2008)

  11. 11.

    Piomelli, U., Balaras, E., Pasinato, H., Squires, K.D., Spalart, P.R.: The inner-outer layer interface in large-eddy simulations with wall-layer models. Int. J. Heat Fluid Flow 24, 538–550 (2003)

  12. 12.

    Deardorff, J.W.: A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech. 41, 453–480 (1970)

  13. 13.

    Schumann, U.: Subgrid scale model for finite difference simulations in plane channels and annuli. J. Comput. Phys. 18, 376–404 (1975)

  14. 14.

    Grotzbach, G.: Direct numerical and large eddy simulation of turbulent channel flows. In: Cheremisinoff, N.P. (ed.) Encyclopedia of Fluid Mechanics. pp. 1337–1391 (1987)

  15. 15.

    Piomelli, U., Ferziger, J.H., Moin, P., Kim, J.: New approximate boundary conditions for large eddy simulations of wall-bounded flows. Phys. Fluids 1, 1061–1068 (1989)

  16. 16.

    Balaras, E., Benocci, C., Piomelli, U.: Finite–difference computations of high Reynolds number flows using the dynamic subgrid–scale model. Theor. Comput. Fluid Dyn. 7, 207–216 (1995)

  17. 17.

    Werner, H., Wengle, H.: Large-eddy simulation of turbulent flow around a cube in a plane channel. In: Durst, F., Friedrich, R., Launder, B.E., Schumann, U., Whitelaw, J.H. (eds.) Turbulent shear flows 8. pp. 155–168 (1993)

  18. 18.

    Hoffman, G., Benocci, C.: Approximate wall boundary conditions for large-eddy simulations. In: Benzi, R. (ed.) Advances in turbulence V. pp. 222–228 (1995)

  19. 19.

    Wang, M.: LES with wall models for trailing edge aeroacoustics. Annual Research Briefs—Center for Turbulence Research, 355–364 (1999)

  20. 20.

    Mason, P.J., Callen, N.S.: On the magnitude of the subgrid-scale eddy coefficient in large-eddy simulations of turbulent channel flow. J. Fluid Mech. 162, 439–462 (1986)

  21. 21.

    Moeng, C.H.: A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci. 41, 2052–2062 (1984)

  22. 22.

    Bose, S.T., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26, 015104 (2014)

  23. 23.

    Larsson, J., Kawai, S., Bodart, J., Bermejo-Moreno, I.: Large eddy simulation with modeled wall-stress: recent progress and future directions. Mechanical Engineering Reviews, 15–00418 (2015)

  24. 24.

    Balaras, E., Benocci, C., Piomelli, U.: Two layer approximate boundary conditions for large-eddy simulations. AIAA J. 34, 1111–1119 (1996)

  25. 25.

    Wang, M., Moin, P.: Computation of trailing-edge flow and noise using large-eddy simulation. AIAA J. 38, 2201–2209 (2000)

  26. 26.

    Cabot, W.H.: Near-wall models in large-eddy simulations of flow behind a backward-facing step. Annual Research Briefs—Center for Turbulence Research, 199–210 (1996)

  27. 27.

    Diurno, G.V., Balaras, E., Piomelli, U.: Wall-layer models for LES of separated flows. In: Geurts, B.J. (ed.) Modern simulation strategies for turbulent flows. pp. 157–174 (2001)

  28. 28.

    Jayaraju, S.T., Komen, E.M.J., Baglietto, E.: Large eddy simulations for thermal fatigue predictions in a T-Junction: Wall-function or wall-resolve based LES?. In: CFD4NRS-3 Workshop. pp. 1–13 (2010)

  29. 29.

    Moin, P., Bodart, J., Bose, S., Park, G.I.: Wall-modeling in complex turbulent flows. In: Notes on Numerical FluidMechanics and Multidisciplinary Design. pp. 207–219 (2016)

  30. 30.

    Paik, J., Sotiropoulos, F.: DES of turbulent flow over wall-mounted obstacles using wall functions. KSCE J. Civil Eng. 16, 189–196 (2012)

  31. 31.

    Crasto, G.: Numerical simulations of the atmospheric boundary layer (2007)

  32. 32.

    Mockett, C., Fuchs, M., Thiele, F.: Progress in DES for wall-modelled LES of complex internal flows. Comput. Fluids 65, 44–55 (2012)

  33. 33.

    Gritskevich, M.S., Garbaruk, A.V., Schütze, J., Menter, F.R.: Development of DDES and IDDES formulations for the k −ω shear stress transport model. Flow Turbul. Combust. 88, 431–449 (2012)

  34. 34.

    Shur, M.L., Spalart, P.R., Strelets, M.K., Travin, A.K.: A hybrid RANS-LES approach with delayed-DES and wall-modeled LES capabilities. Int. J. Heat Fluid Flow 29, 1638–1649 (2008)

  35. 35.

    Menter, F.R., Kuntz, M., Langtry, R.: Ten years of experience with the SST turbulence model. In: Proceedings of 4th International Symposium on Turbulence, Heat and Mass Transfer. pp. 625–632 (2003)

  36. 36.

    Mathur, S.R., Murthy, J.Y.: A pressure-based method for unstructured meshes. Numer. Heat Tran. 32, 195–215 (1997)

  37. 37.

    Hoyas, S., Jimenez, J.: Reynolds number effects on the Reynolds-stress budgets in turbulent channels. Phys. Fluids 20, 101511 (2008)

  38. 38.

    Breuer, M., Peller, N., Rapp, C., Manhart, M.: Flow over periodic hills - Numerical and experimental study in a wide range of Reynolds numbers. Comput. Fluids 38, 433–457 (2009)

  39. 39.

    Reichardt, H.: Vollstandige darstellung der turbulenten geschwindigkeitsverteilung in glatten leitungen. Z. Angew. Math. Mech. 31, 208–219 (1951)

  40. 40.

    Nikitin, N.V., Nicoud, F., Wasistho, B., Squires, K.D., Spalart, P.R.: An approach to wall modeling in large-eddy simulations. Phys. Fluids 12, 1629–1632 (2000)

  41. 41.

    Gritskevich, M.S., Garbaruk, A.V.: Embedded large eddy simulation with the use of a volume source of turbulent fluctuations. St. Petersburg State Polytechnical University Journal. Phys. Math. (in Russian) 1(141), 27–36 (2012)

  42. 42.

    Adamian, D.Y., Travin, A.K.: Improved version of the synthetic eddy method for setting nonstationary inflow boundary conditions in calculating turbulent flows. High Temp. 49, 704–711 (2011)

  43. 43.

    Coles, D.E., Hirst, E.A.: Computation of turbulent boundary layers - 1968 AFOSR-IFP-Stanford Conference, p 2. Stanford University (1969)

  44. 44.

    Vogel, J.C., Eaton, J.K.: Combined heat transfer and fluid dynamic measurements downstream of a backward-facing step. ASME J. Heat Tran. 107, 922–929 (1985)

  45. 45.

    Odemark, Y., Green, T.M., Angele, K., Westin, J., Alavyoon, F., Lundstrom, S.: High-cycle thermal fatigue in mixing tees: new large-eddy simulations validated against new data obtained by PIV in the Vattenfall experiment. ASME Proceedings. ICONE17-75, 775–785 (2009)

  46. 46.

    Schoenherr, K.E.: Resistance of flat surfaces moving through a fluid. Trans. - Soc. Naval Architects Mar. Eng. 40, 279–313 (1932)

  47. 47.

    Spalart, P., Strelets, M., Travin, A.: Direct numerical simulation of large-eddy-break-up devices in a boundary layer. Int. J. Heat Fluid Flow 27, 902–910 (2006)

  48. 48.

    Mockett, C., Fuchs, M., Garbaruk, A., Shur, M., Spalart, P., Strelets, M., Thiele, F., Travin, A.: Two non-zonal approaches to accelerate RANS to LES transition of free shear layers in DES Presented at the (2014)

  49. 49.

    Gritskevich, M.S., Garbaruk, A.V., Menter, F.R.: Computation of wall bounded flows with heat transfer in the framework of SRS approaches. J. Phys. Conf. Ser. 572, 012057 (2014)

  50. 50.

    Gritskevich, M.S., Garbaruk, A.V., Frank, T., Menter, F.R.: Investigation of the thermal mixing in a T-junction flow with different SRS approaches. Nucl. Eng. Des. 279, 83–90 (2014)

  51. 51.

    Smith, B.L., Mahaffy, J.H., Angele, K., Westin, J.: Report of the OECD/NEA-Vattenfall T-junction benchmark excercise. In: Report No. NEA/CSNI/R(2011)-5. pp. 1–92 (2011)

  52. 52.

    Smith, B.L., Mahaffy, J.H., Angele, K.: A CFD benchmarking exercise based on flow mixing in a T-junction. Nuclear Engineering and Design (2013)

Download references


The authors would like to acknowledge the financial support from the Russian Foundation for Basic Research (grant No. 14-08-31121), the Russian Science Foundation (grant No. 14-11-00060), and ANSYS Inc. The computations within the paper are conducted with the support of Saint-Petersburg Branch of the Joint Supercomputer Center of the Russian academy of sciences.

Author information

Correspondence to M. S. Gritskevich.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gritskevich, M.S., Garbaruk, A.V. & Menter, F.R. A Comprehensive Study of Improved Delayed Detached Eddy Simulation with Wall Functions. Flow Turbulence Combust 98, 461–479 (2017).

Download citation


  • Improved delayed detached eddy simulation (IDDES)
  • Wall functions (FW)
  • Hybrid RANS-LES methods (HRLM)