Flow, Turbulence and Combustion

, Volume 97, Issue 4, pp 1147–1164 | Cite as

Evaluations of SGS Combustion, Scalar Flux and Stress Models in a Turbulent Jet Premixed Flame

  • K. HiraokaEmail author
  • Y. Naka
  • M. Shimura
  • Y. Minamoto
  • N. Fukushima
  • M. Tanahashi
  • T. Miyauchi


A newly developed fractal dynamic SGS (FDSGS) combustion model and a scale self-recognition mixed (SSRM) SGS stress model are evaluated along with other SGS combustion, scalar flux and stress models in a priori and a posteriori manners using DNS data of a hydrogen-air turbulent plane jet premixed flame. A posteriori tests reveal that the LES using the FDSGS combustion model can predict the combustion field well in terms of mean temperature distributions and peak positions in the transverse distributions of filtered reaction progress variable fluctuations. A priori and a posteriori tests of the scalar flux models show that a model proposed by Clark et al. accurately predicts the counter-gradient transport as well as the gradient diffusion, and introduction of the model of Clark et al. into the LES yields slightly better predictions of the filtered progress variable fluctuations than that of a gradient diffusion model. Evaluations of the stress models reveal that the LES with the SSRM model predicts the velocity fluctuations well compared to that with the Smagorinsky model.


Large eddy simulation SGS combustion model SGS scalar flux model SGS stress model Turbulent jet premixed flame 



This work is partially supported by Grant-in-Aid for Scientific Research (S) (No. 23226005) of Japan Society for the Promotion of Science.


  1. 1.
    Bardina, J., Ferziger, J., Reynolds, W.: Improved subgrid-scale models for large-eddy simulation. AIAA J. 80(1357) (1980)Google Scholar
  2. 2.
    Baum, M., Poinsot, T., Thevenin, D.: Accurate boundary conditions for multicomponent reactive flows. J. Comput. Phys. 106, 247–261 (1994)zbMATHGoogle Scholar
  3. 3.
    Boger, M., Veynante, D., Boughanem, H., Trouvé, A.: Direct numerical simulation analysis of flame surface density concept for large eddy simulation of turbulent premixed combustion. Proc. Combust. Inst. 27(1), 917–925 (1998)CrossRefGoogle Scholar
  4. 4.
    Brown, P., Byrne, G., Hindmarsh, A.: VODE: A variable-coefficient ODE solver. SIAM J. Sci. Statist. Compt. 10, 1038–1051 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chakraborty, N., Klein, M.: A priori direct numerical simulation assessment of algebraic flame surface density models for turbulent premixed flames in the context of large eddy simulation. Phys. Fluids 20(085), 108 (2008)zbMATHGoogle Scholar
  6. 6.
    Charlette, F., Meneveau, C., Veynante, D.: A power-law flame wrinkling model for LES of premixed turbulent combustion part I: Non-dynamic formulation and initial tests. Combust. Flame 131, 159–180 (2002)CrossRefGoogle Scholar
  7. 7.
    Chatakonda, O., Hawkes, E.R., Brear, M.J., Chen, J.H., Knudsen, E., Pitsch, H.: Modeling of the wrinkling of premixed turbulent flames in the thin reaction zones regime for large eddy simulation. Proc. CTR Summer Program., 271–280 (2010)Google Scholar
  8. 8.
    Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid Mech. 91(1), 1–16 (1979)CrossRefzbMATHGoogle Scholar
  9. 9.
    Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Damköhler, G.: Der einfluss der turbulenz auf die flammengeschwindigkeit in gasgemischen. Z. Elektrochem. 46(11), 601–626 (1940)Google Scholar
  11. 11.
    Domingo, P., Vervisch, L., Payet, S., Hauguel, R.: DNS of a premixed turbulent V flame and LES of a ducted flame using a FSD-PDF subgrid scale closure with FPI-tabulated chemistry. Combust. Flame 143, 566–586 (2005)CrossRefGoogle Scholar
  12. 12.
    Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. Proc. CTR Summer Program., 169–179 (2000)Google Scholar
  13. 13.
    Fukushima, N., Naka, Y., Hiraoka, K., Shimura, M., Tanahashi, M., Miyauchi, T.: A scale self-recognition mixed SGS model based on the universal representation of Kolmogorov length by GS variables. In: Proc 9th Turbulence and Shear Flow Phenomena (2015)Google Scholar
  14. 14.
    Fureby, C.: A fractal flame-wrinkling large eddy simulation model for premixed turbulent combustion. Proc. Combust. Inst. 30, 593–601 (2005)CrossRefGoogle Scholar
  15. 15.
    Gao, Y., Chakraborty, N., Klein, M.: Assessment of the performances of sub-grid scalar flux models for premixed flames with different global lewis numbers: A direct numerical simulation analysis. Int. J. Heat Fluid Flow 52, 28–39 (2015)CrossRefGoogle Scholar
  16. 16.
    Germano, M., Piomelli, U., Moin, P., Cabot, W.H.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids 3(7), 1760–1765 (1991)CrossRefzbMATHGoogle Scholar
  17. 17.
    Gicquel, L.Y.M., Staffelbach, G., Poinsot, T.: Large eddy simulation of gaseous flames in gas turbine combustion chambers. Prog. Energy Combust. Sci. 38, 782–817 (2012)CrossRefGoogle Scholar
  18. 18.
    Gutheil, E., Balakrishnan, G., Williams, F.A.: Structure and extinction of hydrogen–air diffusion flames. In: Peters, N., Rogg, B. (eds.) Lecture Notes in Physics: Reduced kinetic mechanisms for applications in combustion systems., pp. 177–195. Springer Verlag, New York (1993)Google Scholar
  19. 19.
    Haworth, D.C.: Progress in probability density function methods for turbulent reacting flows. Prog. Energy Combust. Sci. 36, 168–259 (2010)CrossRefGoogle Scholar
  20. 20.
    Hiraoka, K., Minamoto, Y., Shimura, M., Naka, Y., Fukushima, N., Tanahashi, M.: A fractal dynamic SGS combustion model for large eddy simulation of turbulent premixed flames. Comb. Sci. Technol.Google Scholar
  21. 21.
    Huai, Y., Sadiki, A., Pfadler, S., Löffler, M., Beyrau, F., Leipertz, A., Dinkelacker, F.: Experimental assessment of scalar flux models for large eddy simulations of non-reacting flows. Proc. 5th Turbulence. Heat Mass Transf., 263–266 (2006)Google Scholar
  22. 22.
    Jiang, G.S., Peng, D.: Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 21, 2126–2143 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Kerstein, A.R., Ashurst, W.T., Williams, F.A.: Field equation for interface propagation in an unsteady homogeneous flow field. Phys. Rev. A 37(7), 2728–2731 (1988)CrossRefGoogle Scholar
  24. 24.
    Kim, J., Pope, S.B.: Effects of combined dimension reduction and tabulation on the simulations of a turbulent premixed flame using a large-eddy simulation/probability density function method. Combust. Theory Model 18(3), 388–413 (2014)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Knikker, R., Veynante, D., Meneveau, C.: A dynamic flame surface density model for large eddy simulation of turbulent premixed combustion. Phys. Fluids 16 (11), 91–94 (2004)CrossRefzbMATHGoogle Scholar
  26. 26.
    Kobayashi, H.: The subgrid-scale models based on coherent structures for rotating homogeneous turbulence and turbulent channel flow. Phys. Fluids 17(045), 104 (2005)zbMATHGoogle Scholar
  27. 27.
    Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. Sci. 36, 1–102 (2010)CrossRefGoogle Scholar
  29. 29.
    Liu, X.D., Osher, S.: Chan., T.: Weighted essentially non-oscillatory schemes. J. Comput. Phys. 115, 200–212 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Michalke, A.: On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid Mech. 19(4), 543–556 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Miyauchi, T., Tanahashi, M., Gao, F.: Fractal characteristics of turbulent diffusion flames. Comb. Sci. Technol. 96, 135–154 (1994)CrossRefGoogle Scholar
  32. 32.
    Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbulence Combust. 62, 183–200 (1999)CrossRefzbMATHGoogle Scholar
  33. 33.
    Peters, N.: Turbulent Combustion. Cambridge Press (2000)Google Scholar
  34. 34.
    Pfadler, S., Kerl, J., Beyrau, F., Leipertz, A., Sadiki, A., Scheuerlein, J., Dinkelacker, F.: Direct evaluation of the subgrid scale scalar flux in turbulent premixed flames with conditioned dual-plane stereo PIV. Proc. Combust. Inst. 32, 1723–1730 (2009)CrossRefGoogle Scholar
  35. 35.
    Pitsch, H.: A consistent level set formulation for large-eddy simulation of premixed turbulent combustion. Combust. Flame 143(4), 587–598 (2005)CrossRefGoogle Scholar
  36. 36.
    Pitsch, H.: Large eddy simulation of turbulent combustion. Annu. Rev. Fluid Mech. 38, 453–482 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Pitsch, H., Duchamp De Lageneste, L.: Large-eddy simulation of premixed turbulent combustion using a level-set approach. Proc. Combust. Inst. 29, 2009–2015 (2002)CrossRefGoogle Scholar
  38. 38.
    Poinsot, T.J., Lele, S.K.: Boundary conditions for direct simulations of compressible viscous flows. J. Comput. Phys. 101, 104–129 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Richard, S., Colin, O., Vermorel, O., Benkenida, A., Angelberger, C., Veynante, D.: Towards large eddy simulation of combustion in spark ignition engines. Proc. Combust. Inst. 31, 3059–3066 (2007)CrossRefGoogle Scholar
  40. 40.
    Shim, Y., Tanaka, S., Tanahashi, M., Miyauchi, T.: Local structure and fractal characteristics of H 2-air turbulent premixed flame. Proc. Combust. Inst. 33, 1455–1462 (2011)CrossRefGoogle Scholar
  41. 41.
    Shimura, M., Yamawaki, K., Fukushima, N., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: Flame and eddy structures in hydrogen-air turbulent jet premixed flame. J. Turbulence 13(42), 1–17 (2012)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Tanahashi, M., Iwase, S., Miyauchi, T.: Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbulence 2(6), 1–18 (2001)MathSciNetzbMATHGoogle Scholar
  43. 43.
    Thornber, B., Bilger, R.W., Masri, A.R., Hawkes, E.R.: An algorithm for LES of premixed compressible flows using the conditional moment closure model. J. Comput. Phys. 230, 7687–7705 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Tullis, S., Cant, R.S.: Scalar transport modeling in large eddy simulation of turbulent premixed flames. Proc. Combust. Inst. 29, 2097–2104 (2002)CrossRefzbMATHGoogle Scholar
  45. 45.
    Veynante, D., Trouvé, A., Bray, K.N.C., Mantel, T.: Gradient and counter-gradient scalar transport in turbulent premixed flames. J. Fluid Mech. 332, 263–293 (1997)zbMATHGoogle Scholar
  46. 46.
    Veynante, D., Vervisch, L.: Turbulent combustion modeling. Prog. Energy Combust. Sci. 28, 193–266 (2002)CrossRefGoogle Scholar
  47. 47.
    Weller, H.G., Tabor, G., Gosman, A.D., Fureby, C.: Application of a flame-wrinkling LES combustion model to a turbulent mixing layer. Proc. Combust. Inst. 27, 899–907 (1998)CrossRefGoogle Scholar
  48. 48.
    Yoshikawa, I., Shim, Y.S., Nada, Y., Tanahashi, M., Miyauchi, T.: A dynamic SGS combustion model based on fractal characteristics of turbulent premixed flames. Proc. Combust. Inst. 34, 1373–1381 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • K. Hiraoka
    • 1
    Email author
  • Y. Naka
    • 1
  • M. Shimura
    • 1
  • Y. Minamoto
    • 1
  • N. Fukushima
    • 2
  • M. Tanahashi
    • 1
  • T. Miyauchi
    • 3
  1. 1.Department of Mechanical and Aerospace EngineeringTokyo Institute of Technology, 2-12-1 Ookayama, Meguro-kuTokyoJapan
  2. 2.Department of Mechanical EngineeringTokyo University of Science, 6-3-1, Niijuku, Katsushika-kuTokyoJapan
  3. 3.Organization for the Strategic Coordination of Research and Intellectual PropertiesMeiji University, 1-1-1 Higashimita, Tama-kuKanagawaJapan

Personalised recommendations