Advertisement

Flow, Turbulence and Combustion

, Volume 98, Issue 2, pp 355–366 | Cite as

On the Distribution and Scaling of Convective Wavespeeds in the Shear Layers of Heated Supersonic Jets

  • Tobias EckerEmail author
  • K. Todd Lowe
  • Wing F. Ng
Article

Abstract

The noise generated by supersonic plumes is of growing concern given the enormous peak noise intensity radiated by tactical aircraft engines. A key component of this noise is the enhanced radiation of mixing noise caused by large scale eddies convecting supersonically relative to the surrounding quiescent medium. As very little data exist for eddy convection in high Reynolds number, supersonic plumes, our current ability to develop concepts that alter compressible eddy convection is limited. Herein we present new experimental data of eddy convective wavespeeds in the developing shear layer of supersonic heated jets. A new scaling of the wavespeed in radial similarity coordinates is proposed which takes into account the influence of the ratio of static densities between the jet and ambient streams. In particular, we observe a structural change in wavespeed spectra at the end of the potential core—in addition to high turbulence levels, the potential core breakdown region can have enhanced eddy wavespeeds, increasing noise radiation efficiency. The results provide a first examination of the interplay of density ratio effects and the dynamic breakdown process of the potential core in supersonic jets—physics integral to the noise generation process.

Keywords

Jet noise Supersonic shear layers Radiation efficiency 

Notes

Acknowledgments

The authors acknowledge the support of the Office of Naval Research under grants N00014-11-1-0754 and N00014-12-1-0803, program managers Brenda Henderson and Joseph Doychak.

References

  1. 1.
    Papamoschou, D., Xiong, J., Liu, F.: Reduction of radiation efficiency in high-speed jets. Presented at the AIAA Aviation, 20th AIAA/CEAS Aeroacoustics Conference, Atlanta GA. doi: 10.2514/6.2014-2619 (2014)
  2. 2.
    Papamoschou, D.: Mach wave elimination in supersonic jets. AIAA J. 35(10), 1604–1611 (1997). doi: 10.2514/2.19 CrossRefGoogle Scholar
  3. 3.
    Du, Y., Morris, P.J.: The separation of radiating and non-radiating near-field pressure fluctuations in supersonic jets. J. Sound Vib. 355, 172–187 (2015)CrossRefGoogle Scholar
  4. 4.
    Morris, P.: A note on noise generation by large scale turbulent structures in subsonic and supersonic jets. Int. J. Aeroacoustics 8(4), 301–315 (2009). doi: 10.1260/147547209787548921 CrossRefGoogle Scholar
  5. 5.
    Lighthill, M.J.: On sound generated aerodynamically. I. Gen. Theory. Proc. R. Soc. Lond. A 211(1107), 564–587 (1952). doi: 10.1098/rspa.1952.0060 MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bailly, C., Lafon, P., Sé, Candel, B.: Subsonic and supersonic jet noise predictions from statistical source models. AIAA J 35(11), 1688–1696 (1997). doi: 10.2514/2.33
  7. 7.
    FFowcs Williams, J.E., Maidanik, G.: The Mach wave field radiated by supersonic turbulent shear flows. J. Fluid Mech. 21(4), 641–657 (1965). doi: 10.1017/S0022112065000393 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Crighton, D.G.: Basic principles of aerodynamic noise generation. Progress Aerosp. Sci. 16(1), 31–96 (1975). doi: 10.1016/0376-0421(75)90010-X CrossRefGoogle Scholar
  9. 9.
    Lowe, K.T., Ng, W.F., Ecker, T.: Early development of time-resolved volumetric doppler velocimetry for new insights in hot supersonic jet noise. Presented at the 18th AIAA/CEAS Aeroacoustics Conference, Colorado Springs, CO (2012). doi: 10.2514/6.2012-2273 CrossRefGoogle Scholar
  10. 10.
    Ecker, T., Brooks, D.R., Lowe, K.T., Ng, W.F.: Development and application of a point Doppler velocimeter featuring two-beam multiplexing for time-resolved measurements of high-speed flow. Exp. Fluids 55(9), 1819 (2014). doi: 10.1007/s00348-014-1819-0 CrossRefGoogle Scholar
  11. 11.
    Ecker, T., Lowe, K.T., Ng, W.F.: A rapid response 64-channel photomultiplier tube camera for high-speed flow velocimetry. Meas. Sci. Technol. 26(2), 027001 (2015). doi: 10.1088/0957-0233/26/2/027001 CrossRefGoogle Scholar
  12. 12.
    Ecker, T., Lowe, K.T., Ng, W.F.: Eddy Convection in Developing Heated Supersonic Jets. AIAA J. 53(11), 3305–3315 (2015). doi: 10.2514/1.J053946 CrossRefGoogle Scholar
  13. 13.
    Davies, P.O.A.L., Fisher, M.J., Barratt, M.J.: The characteristics of the turbulence in the mixing region of a round jet. J. Fluid Mech. 15(03), 337–367 (1963). doi: 10.1017/S0022112063000306 CrossRefzbMATHGoogle Scholar
  14. 14.
    Fisher, M.J., Davies, P.O.A.L.: Correlation measurements in a non-frozen pattern of turbulence. J. Fluid Mech. 18, 97–116 (1964). doi: 10.1017/S0022112064000076 CrossRefzbMATHGoogle Scholar
  15. 15.
    Moin, P.: Revisiting taylor’s hypothesis. J. Fluid Mech. 640, 1–4 (2009). doi: 10.1017/S0022112009992126 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wills, J.A.B.: On convection velocities in turbulent shear flows. J. Fluid Mech 20(3), 417–432 (1964). doi: 10.1017/S002211206400132X CrossRefzbMATHGoogle Scholar
  17. 17.
    Kerhervé, F., Power, O., Fitzpatrick, J., Jordan, P.: Determination of turbulent scales in subsonic and supersonic jets from LDV measurements. Presented at the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (2004)Google Scholar
  18. 18.
    De Kat, R., Gan, L., Dawson, J.R., Ganapathisubramani, B.: Limitations of estimating turbulent convection velocities from PIV arXiv.org (2013)Google Scholar
  19. 19.
    Pope, S.B.: Cambridge University Press, Turbulent flows (2000)Google Scholar
  20. 20.
    Morris, P.J., Zaman, K.B.M.Q.: Velocity measurements in jets with application to noise source modeling. J. Sound Vib. 329(4), 394–414 (2010). doi: 10.1016/j.jsv.2009.09.024 CrossRefGoogle Scholar
  21. 21.
    Brooks, D.R., Lowe, K.T.: Fluctuating flow acceleration in a heated supersonic jet. Presented at the 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon (2014)Google Scholar
  22. 22.
    Powers, R.W., McLaughlin, D.K.: Acoustic measurements of scale models of military style supersonic beveled nozzle jets with interior corrugations. Presented at the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference), Colorado Springs, CO (2012). doi: 10.2514/6.2012-2116 CrossRefGoogle Scholar
  23. 23.
    Melling, A.: Tracer particles and seeding for particle image velocimetry. Meas. Sci. Technol. 8, 1406 (1997). doi: 10.1088/0957-0233/8/12/005 CrossRefGoogle Scholar
  24. 24.
    Blohm, M., Lempert, W., Samimy, M., Thurow, B.: A study of convective velocity in supersonic jets using MHz rate imaging, AIAA Paper 2006-45, (2006). doi: 10.2514/6.2006-45
  25. 25.
    Lau, J.C.: Laser velocimeter correlation measurements in subsonic and supersonic jets. J. Sound Vib. 70(1), 85–101 (1980). doi: 10.1016/0022-460X(80)90556-8 CrossRefGoogle Scholar
  26. 26.
    Kerhervé, F., Jordan, P., Gervais, Y., Braud, P.: Two-point laser Doppler velocimetry measurements in a Mach 1.2 cold supersonic jet for statistical aeroacoustic source model. Exp. Fluids 37(3), 419–437 (2004). doi: 10.1007/s00348-004-0815-1 CrossRefGoogle Scholar
  27. 27.
    Lau, J.C., Morris, P.J., Fisher, M.J.: Measurements in subsonic and supersonic free jets using a laser velocimeter. J. Fluid Mech. 93, 1–27 (1979). doi: 10.1017/S0022112079001750 CrossRefGoogle Scholar
  28. 28.
    George, W.K.: Some new ideas for similarity of turbulent shear flows. Symposium on Turbulence, Heat and Mass Transfer, 13–24 (1995)Google Scholar
  29. 29.
    Thurow, B.S., Jiang, N., Kim, J.H., Lempert, W., Samimy, M.: Issues with measurements of the convective velocity of large-scale structures in the compressible shear layer of a free jet. Phys. Fluids (1994-present) 20(6), 066101 (2008). doi: 10.1063/1.2926757 CrossRefzbMATHGoogle Scholar
  30. 30.
    Tanna, H.K.: An experimental study of jet noise Part I: Turbulent mixing noise. J. Sound Vib. 50(3), 405–428 (1977). doi: 10.1016/0022-460X(77)90493-X CrossRefGoogle Scholar
  31. 31.
    Thurow, B.S.: On the convective velocity of large-scale structures in compressible axisymmetric jets (2005)Google Scholar
  32. 32.
    Kuo, C.W., Powers, R., McLaughlin, D.K.: Space-time correlation of flow and acoustic field measurements in supersonic helium-air mixture jets using optical deflectometry. 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). Portland, Oregon (2011). doi: 10.2514/6.2011-2789 Google Scholar
  33. 33.
    Goldschmidt, V.W., Young, M.F., Ott, E.S.: Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J. Fluid Mech. 105, 327–345 (1981). doi: 10.1017/S0022112081003236 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Spacecraft DepartmentGerman Aerospace Center (DLR)GöttingenGermany
  2. 2.Department of Aerospace and Ocean EngineeringVirginia TechBlacksburgUSA
  3. 3.Department of Mechanical EngineeringVirginia TechBlacksburgUSA

Personalised recommendations